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Abstract.

..

In this article, we classify the tensors Ř, ρ̌, and R[ρ] on particular class of the three-dimensional warped
product manifolds. These tensors are used in the investigation of weakly-Einstein conditions on these
manifolds. The concept of warped products is of particular importance in differential geometry and
mathematical physics. This concept was first introduced by Bishop and ONiell to construct examples
of Riemannian manifolds with negative curvature. In the following, warped product spaces have been
extensively studied and used to construct new manifolds with interesting curvature properties. Also, in
Lorentzian geometry, some well-known solutions to Einstein field equations, such as Schwarzschild and
Friedmann-Robertson-Walker metrics, can be expressed in terms of warped products. Thus, Lorentzian
warped products have been used to obtain more solutions to Einstein field equations. he warped products
are of particular importance from a curvature point of view, Since in many cases they are related to the
structure of the Codazzi tensors and sometimes locally conformally flat manifolds.

1. Introduction

Suppose (B, gB) and (F, gF ) be two semi-Riemannian manifolds and f : B −→ R+ be a positive function
on B. The warped product M = B ×f F is the product manifold B × F , equipped with metric tensor
g = gB ⊕ f2gF . The function f is called the warping function of M = B ×f F , B the base, and F the fiber.
if f = 1, then B×f F reduces to a semi-Riemannian product manifold. The concept of warped products is of
particular importance in differential geometry and mathematical physics. This concept was first introduced
by Bishop and ONiell to construct examples of Riemannian manifolds with negative curvature [1]. In the
following, warped product spaces have been extensively studied and used to construct new manifolds with
interesting curvature properties. Also, in Lorentzian geometry, some well-known solutions to Einstein field
equations, such as Schwarzschild and Friedmann-Robertson-Walker metrics, can be expressed in terms of
warped products. Thus, Lorentzian warped products have been used to obtain more solutions to Einstein
field equations [2]. In this work, we want to compute the tensors Ř, ρ̌ and R[ρ] on the three-dimensional
Lorentzian warped product manifold M = B ×f F with metric

g = dt2 + f2gF , (1.1)

where B is one-dimensional manifold and F is two-dimensional Lorentzian manifold. The tensors Ř, ρ̌ and
R[ρ] are symmetric (0, 2)-tensor fields which are defined as follows

Řij = RiabcRabc
j , ρ̌ij = ρiaρ

a
j , R[ρ]ij = Riabjρ

ab. (1.2)

These tensors are simplest tensors after Ricci tensor but they not seem to have received much attention in
the literature (See for example, the discussion in [3]).
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2. Preliminaries

In this section, we first describe the basic concepts for the metric (1.1) to provide the necessary conditions
for calculating the tensors Ř, ρ̌ and R[ρ]. See [4] for more information.

Lemma 2.1. Let M = B ×f F be a Lorentzian warped product where B is one-dimensional manifold and
F is two-dimensional Lorentzian manifold. If U, V ∈ X(F ), then

(1) ∇∂t∂t = 0,

(2) ∇∂tU = ∇U∂t = (f
′

f )U ,

(3) nor(∇UV ) = II(U, V ) = −g(U, V )(f
′

f )∂t,

(4) tan(∇UV ) is the lift of ∇F
UV on F ,

where ∇F
UV is Levi-Civita connection on (F, gF ).

The next result provides the curvature of a warped product M = B×f F in terms of its warping function

f and the curvature tensor RF of F .

Lemma 2.2. Let M = B ×f F be a Lorentzian warped product where B is one-dimensional manifold and
F is two-dimensional Lorentzian manifold. If U, V,W ∈ X(F ), then

(1) R(U, ∂t)∂t =
Hf (∂t,∂t)

f U ,

(2) R(U, V )∂t = 0,

(3) R(∂t, U)V = g(U,V )
f ∇∂t(∇f),

(4) R(U, V )W = RF (U, V )W − ∥∇f∥2
f2 (g(U,W )V − g(V,W )U).

From Lemma 2 we have the following.

Corollary 2.3. Let M = B×f F be a Lorentzian warped product where B is one-dimensional manifold and
F is two-dimensional Lorentzian manifold. Then the Ricci tensor ρ of M satisfies

(1) ρ(∂t, ∂t) = − 2
fHf (∂t, ∂t),

(2) ρ(U, ∂t) = 0,

(3) ρ(U, V ) = ρF (U, V )− g(U, V )(△f
f + ∥∇f∥2

f2 ),

where ρF is the lift of the Ricci curvatures of F .

3. The tensor Ř, ρ̌ and R[ρ] of warped product manifold

The warped products are of particular importance from a curvature point of view, Since in many cases
they are related to the structure of the Codazzi tensors and sometimes locally conformally flat manifolds.
We want to compute the tensors Ř, ρ̌ and R[ρ] of the product warped M = B ×f F with equipped with
metric tensor g = dt2 + f2gF , where F is two-dimensional Lorentzian manifold.

Theorem 3.1. Suppose M = B×f F be a Lorentzian warped product where B is one-dimensional manifold

and F is two-dimensional Lorentzian manifold. If X,Y ∈ X(B) and U, V ∈ X(F ), then the tensor Ř satisfies
in the following conditions:

(1) The tensor Ř satisfies in the following conditions:
(1-1) Ř(X,Y ) = 4

f2 ∥hf∥2g(X,Y ),

(1-2) Ř(X,V ) = 0,
(1-3) Ř(U, V ) = 1

f2 ŘF (U, V ).

(2) The tensor ρ̌ satisfies in the following conditions:
(2-1) ρ̌(X,Y ) = 4

f2 ∥hf∥2g(X,Y ),
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(2-2) ρ̌(X,V ) = 0,
(2-3) ρ̌(U, V ) = 1

f2 ρ̌
F (U, V ).

(3) The tensor R[ρ] satisfies in the following conditions:

(3-1) R[ρ](X,Y ) = 1
f (

τF

f2 − 2(△f
f − ∥∇f∥2

f2 ))Hf (X,Y ),

(3-2) R[ρ](X,V ) = 0,

(3-3) R[ρ](U, V ) = − 2
f2 ∥hf∥2g(U, V ) + 1

f2RF [ρ](U, V )− (△f
f − ∥∇f∥2

f2 )ρF (U, V ).

Proof. Consider a local basis {∂t, v1, v2}, where ∂t = ∂
∂t

is the natural basis of B and {, v1, v2} a local

orthonormal basis of Ricci eigenvectors on F . Using Lemma 2, the components of the tensor Ř with respect
to the local pseudo-orthonormal frame field {∂t, 1

f v1,
1
f v2}, on M = B ×f F are given by

Ř(X,Y ) = RXαβγRY αβγg(α, α)g(β, β)g(γ, γ)

= RXvi∂tγRY vi∂tγg(vi, vi)g(∂t, ∂t)g(γ, γ)

+RXvivjγRY vivjγg(vi, vi)g(vj , vj)g(γ, γ)

= g(− 1

f
Hf (X, ∂t)vi, γ)g(−

1

f
Hf (Y, ∂t)vi, γ)g(γ, γ)

+ g(
g(vi, vj)

f
∇X∇f, γ)g(

g(vi, vj)

f
∇Y ∇f, γ)g(γ, γ)

=
2

f2
Hf (X, ∂t)Hf (Y, ∂t) +

2

f2
g(∇X∇f, γ)g(∇Y ∇f, γ)

=
4

f2
∥hf∥2g(X,Y ).

Ř(U, V ) = RUαβγRV αβγg(α, α)g(β, β)g(γ, γ)

= RU∂t∂tγRV ∂t∂tγg(∂t, ∂t)g(∂t, ∂t)g(γ, γ)

+RU∂tviγRV ∂tviγg(∂t, ∂t)g(vi, vi)g(γ, γ)

+RUvivjγRV vivjγg(vi, vi)g(vj , vj)g(γ, γ)

= g(
1

f
Hf (∂t, ∂t)U, γ)g(

1

f
Hf (∂t, ∂t)V, γ)g(γ, γ)

+ g(
−g(U, vi)

f
∇∂t∇f, γ)g(

−g(V, vi)

f
∇∂t∇f, γ)g(γ, γ)

+ g(RF (U, vi)vj −
∥∇f∥2

f2
[g(U, vj)vi − g(vi, vj)U ], γ)

g(RF (V, vi)vj −
∥∇f∥2

f2
[g(V, vj)vi − g(vi, vj)V ], γ)
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= g(RF (U, vi)vj , vk)g(RF (V, vi)vj , vk)

− ∥∇f∥2

f2
[g(V, vj)g(vi, vk)− g(vi, vi)g(V, vk)]g(RF (U, vi)vj , vk)

− ∥∇f∥2

f2
[g(U, vj)g(vi, vk)− g(vi, vi)g(U, vk)]g(RF (V, vi)vj , vk)

+
∥∇f∥4

f4
[g(U, vj)g(vi, vk)− g(vi, vi)g(U, vk)][g(V, vj)g(vi, vk)− g(vi, vj)g(V, vk)]

=
1

f2
ŘF (U, V ).

The components of the tensor ρ̌ are obtained as follows:

ρ̌(X,Y ) = ρ(X,α)ρ(Y, β)g(α, α)

= ρ(X, ∂t)ρ(Y, ∂t)g(∂t, ∂t)

=
4

f2
Hf (X, ∂t)Hf (Y, ∂t)

=
4

f2
∥hf∥2g(X,Y ).

ρ̌(U, V ) = ρ(U,α)ρ(V, β)g(α, α)

= ρ(U, vi)ρ(V, vi)g(vi, vi)

= [ρF (U, vi)− g(U, vi)(
△f

f
+

∥∇f∥2

f2
)][ρF (V, vi)− g(V, vi)(

△f

f
+

∥∇f∥2

f2
)]g(vi, vi)

=
1

f2
ρ̌F (U, V )− (

△f

f
+

∥∇f∥2

f2
)[g(U, vi)ρ

F (V, vi) + g(V, vi)ρ
F (U, vi)]

+ (
△f

f
+

∥∇f∥2

f2
)[g(U, vi)g(V, vi)]g(vi, vi)

=
1

f2
ρ̌F (U, V ).

With a similar process, we can obtain the components of the tensor R[ρ]. �
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