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Abstract.

..

This paper deals with the nonlinear eigenvalue problem, for perturbated p-Laplacian operator, on
a compact Riemannian manifold and determines a gradient estimate of eigenfunction associated
with (first) eigenvalue of perturbated p-Laplacian operator. Using this estimate, we find a lower
bound for this eigenvalue. In this paper we investigate the first (principal) nonlinear eigenvalue
of the perturbated p-Laplacian on compact Riemannian manifolds and provide a lower bound
through use of the diameter and the inscribed radius in terms of geometric quantities of manifold,
and properties of disturbed term, when the Ricci curvature is non-negative. There are many
results on the lower bound estimates for principal eigenvalues and eigenfunctions for domains in
Euclidean space examined in multiple research papers. For a compact manifold with no boundary,
for Laplace operator, i.e. p = 2, a sharp lower bound estimate on a compact Riemannian manifold
with nonnegative Ricci curvature is known. Through a process of computation which involves
Lagrange multipliers, it can be demonstrated.

1. Introduction

The main objective of this paper is to investigate the first (principal) nonlinear eigenvalue of the per-
turbated p-Laplacian on compact Riemannian manifolds and provide a lower bound through use of the
diameter and the inscribed radius in terms of geometric quantities of manifold, and properties of disturbed
term, when the Ricci curvature is non-negative. We denote by ∆p the p-laplacian, i.e.

∆pu = −div
(
|∇u|p−2∇u

)
,

and consider the following nonlinear eigenvalue problem:

∆pu+ F (x, u(x),∇u(x)) = −λ|u|p−2u, u ̸≡ 0. (1.1)

The examination of lower bound approximations for principal eigenvalues and eigenfunctions in Euclidean
space domains has been a topic of interest in numerous research papers (e.g. [1],[2],[3],[4],[5], [6],[7]).

For a compact manifold with no boundary, we set λ1,p as the infimum of positive λ such that there is
u ̸≡ 0 for which

∆pu = −λ|u|p−2u.

It has been determined in [8], that a compact Riemannian manifold with non-negative Ricci curvature has
a sharp lower bound estimate for the Laplace operator, i.e. p = 2,

λ1,2 ≥
π2

d2
.
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Through a process of computation which involves Lagrange multipliers, it can be demonstrated that this is
equivalent to

λ1,p = inf

{(∫
M |∇u|p

)(∫
M |u|p

) ; 0 ̸= u ∈ W 1,p(M) ,

∫
M

|u|p−2u = 0

}
. (1.2)

Remark 1.1. Utilizing the same method, a similar expression is shown to be valid for 1.1.

Kawai and Nakauchi in [9], have shown that for a compact Riemannian manifold M without boundary
and p ≥ 2, if the inequality Ric(M) ≥ 0 holds, then we have

λ1,p ≥
1

p− 1

(π
4

)p 1

dp
,

where, the diameter of M is denoted by d, while Ric(M) stands for the Ricci curvature of M . The purpose
of this paper is to present a gradient estimate for eigenfunction and by examining geometrical aspects and
features of the perturbated term, a lower bounds for the principal eigenvalue of 1.1 can be calculated.

Proposition 1.2. [gradient estimate for u] Let M be a compact Riemannian manifold with non-negative
Ricci curvature and u be an eigenfunction in association with the eigenvalue λ of 1.1, then

|∇u|p

β − |u|p
≤ λ+ F (x, u(x),∇u(x))

p− 1
,

where β having a value of µ sup |u| and µ > 1, is determined eventually.

Theorem 1.3. Let M be a compact Riemannian manifold and p ≥ 2. If λ(= λ1,p) be eigenvalue of 1.1,
then

λ ≥

1
d

π
(
(p− 1)2p−1

) 1
p

p sin
(
π
p

) − C
1
pβ

− C
1
p

p

,

under the following condition:
(a) the inequality Ric(M) ≥ 0 holds,
(b) F is a Caratheodory function and |F (x, η, µ)| ≤ C (1 + |µ|)p ,
(c) F (., 0, 0) = 0.

The conventions we will use are as follows:
(M, ⟨., .⟩) represents a Riemannian manifold with nonnegative Ricci curvature, diameter d and dimension n.
For fix p > 1, and a function u : M → R, Hess will represent the Hessian as a (2, 0) or (1, 1) tensor, with a
definition. We will use the convention

ui := ∇eiu , uij := ∇j∇iu.

It is known that

(Hess u) (∇u,∇f) =
∑
i,j

uiju
if j ,

where ui, f j are elements of ∇u, ∇f respectively.
Our main results are determined by employing Li-Yau’s gradient estimate method, in [10]. Using the linear
operator P (u), we define a continuous function P (u)f , for every function u in class C1 and f in class C2,

P (u)f = |∇u|p−2∆f + (p− 2) |∇u|p−4 (Hess f) (∇u,∇u) ,

and estimate P (u)|∇u|p.
In this kind of expressions and computation, we have to deal with higher order derivatives. It is well known
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that weak solutions of equations such as 1.1, belong to W 1,p(M)
∩

C1,α(M), for some 0 < α < 1. Under
same conditions on F , such that F is a Caratheodory function and satisfy the following growth condition

|F (x, u,∇u)| ≤ C (1 + ∥∇u∥)p , (1.3)

for some positive constant C and all µ ∈ Rd − {0}, for example see [4], [11], and 1.1 will never yield a
nontrivial solution in class C2, as stated by maximum principle. In fact, if u belongs to class C2 everywhere,
we can rephrase equation 1.1 accordingly:

|∇u|p−2∆u+ (p− 2)|∇u|p−4 (Hess u) (∇u,∇u) + F (x, u,∇u) = −λ|u|p−2u.

If |∇u| = 0 at x0, then by assumption on F, u(x0) = 0 and due to the compact nature of M , it follows that
maxu = minu = 0, which is contrary to u ̸≡ 0.
For a good reference of this kind of results, one can refer to [11].

2. Linearization of p-Laplacian and lemmas

In this section, we shall prove some calculation lemmas.
In the beginning, we employ a naive approach to estimate the linearization of the p-Laplacian near u, i.e.,
for every function u ∈ C1(M) and f ∈ C2(M), let

L(u)f ≡ d

dt

∣∣∣∣∣
t=0

∆p(u+ tf) = div
(
(p− 2)|∇u|p−4 ⟨∇u,∇f⟩∇u+ |∇u|p−2∇f

)
= (p− 2)∆pu

⟨∇u,∇f⟩
|∇u|2

+ (p− 2)|∇u|p−2

⟨
∇u,∇⟨∇u,∇f⟩

|∇u|2

⟩
+

(p− 2)|∇u|p−4(Hess u)(∇u,∇f) + |∇u|p−2∆f

= |∇u|p−2∆f + (p− 2)|∇u|p−4(Hess f)(∇u,∇u) + (p− 2)∇pu
⟨∇u,∇f⟩
|∆u|2

+ 2(p− 2)|∇u|p−4(Hess u)

(
∇u,∇f − ∇u

|∇u|

⟨
∇u

|∇u|
,∇f

⟩)
.

Now if u is an eigenfunction of the equation ∆pu = −λ|u|p−2u, the pointwise definition of this operator
only applies when the gradient of u is nonzero (and so u is locally smooth), so it can be easily demonstrated
that it is strictly elliptic at these points.
For convenience, denote by P (u)f the second order part of L(u), which is

P (u)f ≡ |∇u|p−2∆f + (p− 2)|∇u|p−4 (Hess f) (∇u,∇u), (2.1)

or equivalently

P (u)f ≡
[
|∇u|p−2δij + (p− 2)|∇u|p−4uiuj

]
fij . (2.2)

The primary symbol of P (u) is non-negative in all areas and strictly positive around points where ∇u is not
null.
In regards to a local orthonormal frame field {e1, · · · , en}, we possess

P (u)f =
∑
i,j

pij(u)fij , (2.3)

where pij(u) = |∇u|p−2δij + (p− 2)|∇u|p−4uiuj .
If u is of class C2(M), then P (u)u = ∆pu and L(u)u = (p− 1)∆pu.
The aim of linearized p-Laplacian is to achieve a version of the recognized Bochner formula that can be
applied to equation 1.1.
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The following two lemmas are necessary. Identities
(
|∇u|2

)
i
= 2

∑
j ujuji and ∇

(
|∇u|2

)
= 2|∇u|∇ |∇u|,

are straightforward.

Lemma 2.1. If a function u is of class C2, then∑
i,j

uiujuji =
1

2

⟨
∇u,∇|∇u|2

⟩
≤ |∇u|2

∣∣∣∇|∇u|
∣∣∣,

∑
i,j,k

uiujukiukj = |∇u|2
∣∣∣∇|∇u|

∣∣∣2.
Lemma 2.2. In the case of a weak solution u to equation 1.1, the following identity hold:

|∇u|p−2∆u+ F (x, u,∇u) = −p− 2

2
|∇u|p−4

⟨
∇u,∇|∇u|2

⟩
− λ|u|p−2u,

at every point, where ∇u ̸= 0.

Lemma 2.3. When u is an eigenfunction of equation 1.1and ∇u ̸= 0:

P (u)(|u|p) = p(p− 1)2|u|p−2|∇u|p − λp|u|2p−2 − pF (x, u,∇u)|u|p−2u.

Proof. With an immediate calculation of 2.3, we can see that

(|u|p)ij = p(p− 2)|u|p−4u2uiuj + p|u|p−2uiuj + p|u|p−2uuij

= p(p− 1)|u|p−2uiuj + p|u|p−2uuij ,

so

P (u) (|u|p) =
∑
i,j

pij(u) (|u|ij)p

= p(p− 1)|u|p−2

|∇u|p + (p− 2)|∇u|p−4
∑
i,j

u2iu
2
j

+ p|u|p−2u (P (u)u)

= p(p− 1)2|u|p−2|∇u|p − λp|u|2p−2 − pF (x, u,∇u)|u|p−2u.

�

Lemma 2.4. For u ∈ C3(M),

P (u) (|∇u|p) = p|∇u|2p−4
∑
i,k

u2ki + p(p− 2)|∇u|2p−6
∑
i,j,k

uiujukiukj

+ p|∇u|2p−4
∑
k

uk(∆u)k + p(p− 2)|∇u|2p−6
∑
i,j,k

ukuiujuikj

+ p|∇u|2p−4
∑
i,j

Rijuiuj + p(p− 2)|∇u|2p−6
∑
i,k,l

ulukuliuki

+ p(p− 2)2|∇u|2p−8
∑
i,j,k,l

uiujulukuljuki.
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Proof. First by the Ricci formula, we have ukij = uijk +
∑

l Rjkilul, so

(|∇u|p)ij =

(
p|∇u|p−2

∑
k

ukuki

)
j

= p|∇u|p−2
∑
k

ukiukj + p|∇u|p−2
∑
k

ukukij

+ p(p− 2)|∇u|p−4
∑
k,l

ulukuljuki,

and

P (u) (|∇u|p) =
∑
i,j

pij(u) (|∇u|p)ij = p|∇u|p−2
∑
i,j,k

pij(u)ukiukj+

p|∇u|p−2
∑
i,j,k

pij(u)ukuijk + p(p− 2)|∇u|p−4
∑
i,j,k,l

pij(u)ulukuljuki

+ p|∇u|p−2
∑
i,j,k,l

pij(u)ukRjkilul = p(p− 2)2|∇u|2p−8
∑
i,j,k,l

uiujulukuljuki

+ p|∇u|2p−4
∑
i,k

(uki)
2 + p(p− 2)|∇u|2p−6

∑
i,j,k

uiujukiukj

+ p|∇u|2p−4
∑
i,k

ukuiik + p(p− 2)|∇u|2p−6
∑
i,j,k

ukuiujuijk

+ p|∇u|p−2
∑
i,j,k,l

pij(u)ukRjkilul + p(p− 2)|∇u|2p−6
∑
i,k,l

ulukuliuki.

However, it is established that
∑

i uiik = (∆u)k. Additionally, according to Bianchi’s formula, term∑
i,j,k,l pij(u)ukRjkilul, implies that Rijkl + Rjkil + Rkijl = 0. Furthermore, considering the definition of

Rkl(:=
∑

iRikil), it can be concluded that∑
i,j,k,l

pijRjkilukul = |∇u|p−2
∑
i,k,l

Rikilukul

+ (p− 2)|∇u|p−4
∑
l

ul

∑
i,j,k

uiujukRjkil

 = |∇u|p−2
∑
k,l

Rklukul.

This equality finishes the proof. �

Lemma 2.5. Suppose u is an eigenfunction of equation 1.1. At any point where ∇u ̸= 0, the following
applies,

|∇u|p
∑
k

uk(∆u)k + (p− 2)|∇u|p−2
∑
i,j,k

uiujukuijk = −λ(p− 1)|u|p−2|∇u|4

− (p− 2)|∇u|p−2
∑
i,j,k

(ukulujkulj + ukujulkulj) + (p− 2)F
∑
i,k

uiukuik

+ 2(p− 2)|∇u|p−4
∑
i,j,k,l

uiujukuluikujl − |∇u|2
∑
k

ukFk

+ λ(p− 2)u|u|p−2
∑
i,k

uiukuik.
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Proof. It is easy to obtain

∆pu = |∇u|p−2∆u+ (p− 2)|∇u|p−4
∑
j,l

ujulujl.

By applying the (.)k on both sides of equation 1.1,

|∇u|p−2(∆u)k + (p− 2)∆u|∇u|p−4
∑
i

uiuik+

(p− 2)(p− 4)|∇u|p−6
∑
i,j,l

uiuikujulujl

+ (p− 2)|∇u|p−4
∑
j,l

(ujkulujl + ujulkujl + ujulujlk)

+ Fk = −λ(p− 1)|u|p−2uk.

Given the operation of multiplying |∇u|2uk to both sides and applying summation on k, and considering
the fact that u is an eigenfunction of equation 1.1, it can be deduced that

|∇u|p
∑
k

uk(∆u)k − (p− 2)

λu|u|p−2 + F + (p− 2)|∇u|p−4
∑
j,l

ujulujl

×

∑
i,k

uiukuik + (p− 2)(p− 4)|∇u|p−4
∑
i,j,k,l

uiujukuluikujl + (p− 2)|∇u|p−2×

∑
j,k,l

ukulujkujl + ukujulkujl + ukujulujlk

+ |∇u|2
∑
k

ukFk

= −λ(p− 1)|u|p−2|∇u|2
∑
k

(uk)
2.

This proves the lemma. �
Now we can obtain a formula of the Bochner-Weitzonbeak type for eigenfunctions of 1.1.

Proposition 2.6. Let M be a Riemannian manifold of nonnegative Ricci curvature, and u be an eigenfunc-
tion of 1.1. Then when ∇u ̸= 0, the subsequent inequality is valid:

1

p
P (u) (|∇u|p) ≥ (p− 1)2|∇u|2p−4A2

u + λ(p− 2)|∇u|p−2|u|p−2uAu

+ (p− 2)|∇u|p−2AuF − λ(p− 1)|∇u|p|u|p−2 − |∇u|p−2 ⟨∇F,∇u⟩

+ (p− 2)|∇u|2p−6
∑
i,j,k

uiuj(uik − uki)ujk,

where Au = |Hess u|(∇u,∇u)
|∇u|2 .

Proof. Through the lemmas stated above, and with the calculation of the left side, we can conclude

1

p
P (u) (|∇u|p) = |∇u|p−2 [⟨∇ (∆pu) ,∇u⟩ − (p− 2)Au∆pu]

+ |∇u|2p−4
[
|Hess u|2 +Ric(M)(∇u,∇u)

]
+ (p− 2)|∇u|2p−6

∑
i,j,k

uiuj(uik − uki)ujk.
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In the above computation, we note that, Ric(M)(∇u,∇u) =
∑

i,j Rijuiuj , |Hess u|2 =
∑

i,j(uij)
2, and

−λ(p− 1)|u|p−2|∇u|4−p − |∇u|2−p
∑
k

ukFk = |∇u|2−p ⟨∇ (∆pu) ,∇u⟩ .

Now in this identity, since Ric(M) ≥ 0, |Hess u|2 ≥ A2
u, and u is an eigenfunction of 1.1, we have

1

p
P (u) (|∇u|p) ≥ |∇u|p−2

⟨
∇
(
−λ|u|p−2u− F (u)

)
,∇u

⟩
+ (p− 2)|∇u|p−2Au×(

λ|u|p−2u+ F
)
+ (p− 1)2|∇u|2p−4A2

u + (p− 2)|∇u|2p−6
∑
i,j,k

uiuj(uik − uki)ujk

= λ(p− 2)|∇u|p−2|u|p−2uAu + (p− 2)|∇u|p−2AuF

− λ|∇u|p−2
⟨
∇
(
|u|p−2u

)
,∇u

⟩
− |∇u|p−2 ⟨∇F,∇u⟩+ (p− 1)2|∇u|2p−4A2

u

+ (p− 2)|∇u|2p−6
∑
i,j,k

uiuj(uik − uki)uk ≥ (p− 1)2|∇u|2p−4A2
u

+ λ(p− 2)|∇u|p−2|u|p−2uAu + (p− 2)|∇u|p−2AuF − λ(p− 1)|∇u|p|u|p−2

− |∇u|p−2 ⟨∇F,∇u⟩+ (p− 2)|∇u|2p−6
∑
i,j,k

uiuj(uik − uki)ujk.

�

Remark 2.7. In order to improve the accuracy of our estimation, we can utilize a more sophisticated
approach for calculating |Hess u|2 in linear scenarios:

|Hess u|2 ≥ (∆u)2

n
+

n

n− 1

(
∆u

n
−Au

)2

,

and get a better estimate.

3. Proof of main results

Our focus now shifts to establishing a gradient estimate for eigenfunctions. To begin, we will consider a
weak solution u that belongs to the class W 1,p(M) and fulfills equation 1.1. As stated u ∈ C1,α, for some
0 < α < 1.
The identity

∫
M u|u|p−2dν = 0, implies that u changes sign. Set β = µ(supM u)p, where µ > 1.

Proof of 1.2: We consider a continuous function G = |∇u|p
β−|u|p , A = β − |u|p.

This function achieves it’s maximum at a point x0 ∈ M . We also assume that ∇u ̸= 0. From regularity of
elliptic equations, G is smooth function around x0.
The maximum principle implies that

∇G(x0) = 0,

(P (u)G) (x0) ≤ 0.

To accurately represent the solution u, we take a local orthonormal frame field {e1, · · · , en} centered around
x0, so we have u1 = |∇u|, and ui = 0, for i ≥ 2. At x0 , from ∇G = 0 we have∑

j

|∇u|p−2ujuji + |∇u|p|u|p−2u
ui
A

= 0, for i = 1, · · · , n.

With above assumption on local orthonormal frame, we have

u1j = 0 (for j ≥ 2), up−2
1 u11 = −u|u|p−2G.
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Employing lemmas in the previous section, we have

P (u) (|u|p) = p(p− 1)2|u|p−2|∇u|p − λp|u|2p−2 − pF (x, u,∇u)|u|p−2u

= p(p− 1)2|u|p−2up1 − λp|u|2p−2 − pF |u|p−2u

and

P (u) (|∇u|p) = p|∇u|2p−4
∑
i,k

u2ki + p(p− 2)|∇u|2p−6
∑
i,j,k

uiujukiukj

+ p|∇u|2p−4
∑
k

uk(∆u)k + p(p− 2)|∇u|2p−6
∑
i,j,k

ukuiujuikj

+ p|∇u|2p−4
∑
i,j

Rijuiuj + p(p− 2)|∇u|2p−6
∑
i,k,l

ulukuliuki

+ p(p− 2)2|∇u|2p−8
∑
i,j,k,l

uiujulukuljuki = pu2p−4
1

∑
i,k

u2ki + (p− 2)
∑
k

u2k1


+ pu2p−3

1 (∆u)1 + p(p− 2)u2p−3
1 u111 + pu2p−2

1 R11 + p(p− 2)u2p−4
1 u211

+ p(p− 2)2u2p−4
1 u211 = pu2p−4

1

∑
i,k

u2ki + (p− 2)
∑
k

u2k1


+ pu2p−3

1 ((∆u)1 + (p− 2)u111) + pu2p−2
1 R11 + p(p− 2)(p− 1)u2p−4

1 u211

that is Ric(M) ≥ 0, and
∑

i,k u
2
ki ≥

∑
k u

2
k1 > u211,

P (u) (|∇u|p) > p(p− 1)2u2p−4
1 u211 + pu2p−3

1 ((∆u)1 + (p− 2)u111) .

From lemma 2.5,

up+1
1 (∆u)1 + (p− 2)up+1

1 u111 = −λ(p− 1)u41|u|p−2 − 2(p− 2)up1u
2
11 + (p− 2)Fu21u11

+ 2(p− 2)up1u
2
11 − up−1

1 F1 + λ(p− 2)u|u|p−2u21u11,

or

up+1
1 ((∆u)1 + (p− 2)u111) = (p− 2)Fu211u11 − up−1

1 F1 − λ(p− 1)u41|u|p−2

+ λ(p− 2)uu21u11|u|p−2.

Recall the identity |∇u|p = AG. Applying P (u) to both sides ∇G(x0) = 0 and P (u)G(x0) ≤ 0,

P (u) (|∇u|p) = P (u)(AG) =
∑
i,j

pij (AijG+AiGj +AjGi +AGij)

= |∇u|p−2
∑
i

(AiiG+ 2AiGi +AGii)

+ (p− 2)|∇u|p−4
∑
i,j

(AijG+AiGj +AjGi +AGij) .
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Then at x0,

P (u) (|∇u|p) (x0) = |∇u|p−2
∑
i

(AiiG+AGii) + (p− 2)|∇u|p−4u21 (A11G+AG11)

= up−2
1

[∑
i

(AiiG+AGii) + (p− 2)A11G+ (p− 2)AG11

]
.

But in x0, P (u)G ≤ 0 so
∑

i,j pijGij ≤ 0 and then

(p− 2)G11 +
∑
i

Gii ≤ 0.

Hence

P (u) (|∇u|p) (x0) ≤ up−2
1

[
(p− 2)A11 +

∑
i

Aii

]
G.

Also A = β − |u|p implies that

Aii = −p
[
(p− 2)|u|p−4u2u2i + |u|p−2u2i + |u|p−2uuii

]
.

For this point x0,
if i = 1, A11 = −p(p− 1)|u|p−2u21 − p|u|p−2uu11
and for i > 1, Aii = −p|u|p−2uuii.
Therefore,

P (u) (|∇u|p) (x0) ≤ −pG|u|p−2up−2
1 [(p− 1)u21 + |u|p−2uu11 +

∑
i

uuii + (p− 2)uu11

+ (p− 1)(p− 2)u21] = −G
[
p(p− 1)2|u|p−2up1 − λp|u|2p−2 − pFu|u|p−2

]
,

and then

P (u) (|∇u|p) (x0) ≤ −GP (u) (|u|p) (x0).

Combining the above inequalities, at x0,

−GP (|u|p) ≥ P (|∇u|p) ,

so

−G
(
p(p− 1)2|u|p−2up1 − λp|u|2p−2 − pF |u|p−2u

)
> p(p− 1)2u2p−4

1 u211

+ pu2p−3
1 ((∆u)1 + (p− 2)u111) = p(p− 1)2u2p−4

1 u211

+ pup−4
1

(
(p− 2)Fu21u11 − up−1

1 F1 − λ(p− 1)u41|u|p−2 + λ(p− 2)uu21u11|u|p−2
)
.

Finally

u2p−5
1 F1 + λβ(p− 1)G|u|p−2 + (p− 1)u|u|p−2FG > βG2(p− 1)2|u|p−2,

or

u2p−5
1

(p− 1)Gβ|u|p−2
∥F1∥∞ + λ+

u

β
F > G(p− 1).

Now as for boundedness of ∥F1∥∞, ∥F∥∞, as well as u1, |u| at the point x0, while µ is sufficiently near to 1,
we are able to pass from the first term and coefficient of F and get λ+ F ≥ G(p− 1). �
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Proof of 1.3. First, recall a well-known inequality in which for any n > 1:

|a+ b|n ≤ 2n−1 (|a|n + |b|n) .

Let x1, x2 ∈ M , such that 0 < u(x1) = supu, u(x2) = 0, and consider a minimal normal geodesic γ, whit
γ(0) = x2 to γ(1) = x1.
Due to the fact that dist(x2, x1) ≤ d, and with the considering circumstance 1.3 on F , we have

λ+ C (1 + |∇u|)p ≥ (p− 1)G

p

√
λ

(p− 1)2p−1
+ p

√
C

(p− 1)2p−1
(1 + |∇u|) ≥ |∇u|

(β − |u|p)
1
p

.

Integrating along γ from x2 to x1 and then changing the variable, we obtain that

d
λ

1
p + C

1
p

((p− 1)2p−1)
1
p

+
C

1
p

((p− 1)2p−1)
1
p

∫ x1

x2

|∇u| ≥
∫ x1

x2

|∇u|

(β − |u|p)
1
p

or after simplification

d
λ

1
p + C

1
p

((p− 1)2p−1)
1
p

+
C

1
p

((p− 1)2p−1)
1
p

∫ supu

0
du ≥

∫ supu

0

du

(β − |u|p)
1
p

=

∫ 1

0

du

(1− |u|p)
1
p

=
π

p sin(πp )
.

Therefore,

λ ≥

1
d

π
(
(p− 1)2p−1

) 1
p

p sin
(
π
p

) − C
1
pβ

− C
1
p

p

.

�
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