PERTURBATED P-LAPLACIAN ON RIEMANNIAN MANIFOLDS

M. LATIFI ${ }^{1}{ }^{*}$ AND M. ALIMOHAMMADY ${ }^{2}$
${ }^{1}$ Department of Basic Sciences, Khatam-Ol-Anbia (PBA) University, Tehran, Iran
${ }^{2}$ Department of Mathematics, Faculty of Basic Sciences, University of Mazandaran, Babolsar 47416-1468, Iran

Abstract

. This paper deals with the nonlinear eigenvalue problem, for perturbated p-Laplacian operator, on a compact Riemannian manifold and determines a gradient estimate of eigenfunction associated with (first) eigenvalue of perturbated p-Laplacian operator. Using this estimate, we find a lower bound for this eigenvalue. In this paper we investigate the first (principal) nonlinear eigenvalue of the perturbated p-Laplacian on compact Riemannian manifolds and provide a lower bound through use of the diameter and the inscribed radius in terms of geometric quantities of manifold, and properties of disturbed term, when the Ricci curvature is non-negative. There are many results on the lower bound estimates for principal eigenvalues and eigenfunctions for domains in Euclidean space examined in multiple research papers. For a compact manifold with no boundary, for Laplace operator, i.e. $p=2$, a sharp lower bound estimate on a compact Riemannian manifold with nonnegative Ricci curvature is known. Through a process of computation which involves Lagrange multipliers, it can be demonstrated.

1. Introduction

The main objective of this paper is to investigate the first (principal) nonlinear eigenvalue of the perturbated p-Laplacian on compact Riemannian manifolds and provide a lower bound through use of the diameter and the inscribed radius in terms of geometric quantities of manifold, and properties of disturbed term, when the Ricci curvature is non-negative. We denote by Δ_{p} the p-laplacian, i.e.

$$
\Delta_{p} u=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)
$$

and consider the following nonlinear eigenvalue problem:

$$
\begin{equation*}
\Delta_{p} u+F(x, u(x), \nabla u(x))=-\lambda|u|^{p-2} u, \quad u \not \equiv 0 \tag{1.1}
\end{equation*}
$$

The examination of lower bound approximations for principal eigenvalues and eigenfunctions in Euclidean space domains has been a topic of interest in numerous research papers (e.g. [1], [2], [3], [4], [5], [6], [7]).

For a compact manifold with no boundary, we set $\lambda_{1, p}$ as the infimum of positive λ such that there is $u \not \equiv 0$ for which

$$
\Delta_{p} u=-\lambda|u|^{p-2} u
$$

It has been determined in [8], that a compact Riemannian manifold with non-negative Ricci curvature has a sharp lower bound estimate for the Laplace operator, i.e. $p=2$,

$$
\lambda_{1,2} \geq \frac{\pi^{2}}{d^{2}}
$$

[^0]Through a process of computation which involves Lagrange multipliers, it can be demonstrated that this is equivalent to

$$
\begin{equation*}
\lambda_{1, p}=\inf \left\{\frac{\left(\int_{M}|\nabla u|^{p}\right)}{\left(\int_{M}|u|^{p}\right)} ; 0 \neq u \in W^{1, p}(M), \int_{M}|u|^{p-2} u=0\right\} . \tag{1.2}
\end{equation*}
$$

Remark 1.1. Utilizing the same method, a similar expression is shown to be valid for 1.1.
Kawai and Nakauchi in [9], have shown that for a compact Riemannian manifold M without boundary and $p \geq 2$, if the inequality $\operatorname{Ric}(M) \geq 0$ holds, then we have

$$
\lambda_{1, p} \geq \frac{1}{p-1}\left(\frac{\pi}{4}\right)^{p} \frac{1}{d^{p}},
$$

where, the diameter of M is denoted by d, while $\operatorname{Ric}(M)$ stands for the Ricci curvature of M. The purpose of this paper is to present a gradient estimate for eigenfunction and by examining geometrical aspects and features of the perturbated term, a lower bounds for the principal eigenvalue of 1.1 can be calculated.

Proposition 1.2. [gradient estimate for u] Let M be a compact Riemannian manifold with non-negative Ricci curvature and u be an eigenfunction in association with the eigenvalue λ of 1.1, then

$$
\frac{|\nabla u|^{p}}{\beta-|u|^{p}} \leq \frac{\lambda+F(x, u(x), \nabla u(x))}{p-1}
$$

where β having a value of $\mu \sup |u|$ and $\mu>1$, is determined eventually.
Theorem 1.3. Let M be a compact Riemannian manifold and $p \geq 2$. If $\lambda\left(=\lambda_{1, p}\right)$ be eigenvalue of 1.1, then

$$
\lambda \geq\left[\frac{1}{d}\left(\frac{\pi\left((p-1) 2^{p-1}\right)^{\frac{1}{p}}}{p \sin \left(\frac{\pi}{p}\right)}-C^{\frac{1}{p}} \beta\right)-C^{\frac{1}{p}}\right]^{p},
$$

under the following condition:
(a) the inequality $\operatorname{Ric}(M) \geq 0$ holds,
(b) F is a Caratheodory function and $|F(x, \eta, \mu)| \leq C(1+|\mu|)^{p}$,
(c) $F(., 0,0)=0$.

The conventions we will use are as follows:
$(M,\langle.,\rangle$.$) represents a Riemannian manifold with nonnegative Ricci curvature, diameter d$ and dimension n. For fix $p>1$, and a function $u: M \rightarrow \mathbb{R}$, Hess will represent the Hessian as a $(2,0)$ or $(1,1)$ tensor, with a definition. We will use the convention

$$
u_{i}:=\nabla_{e_{i}} u \quad, \quad u_{i j}:=\nabla_{j} \nabla_{i} u
$$

It is known that

$$
(\text { Hess } u)(\nabla u, \nabla f)=\sum_{i, j} u_{i j} u^{i} f^{j},
$$

where u^{i}, f^{j} are elements of $\nabla u, \nabla f$ respectively.
Our main results are determined by employing Li-Yau's gradient estimate method, in [10]. Using the linear operator $P(u)$, we define a continuous function $P(u) f$, for every function u in class C^{1} and f in class C^{2},

$$
P(u) f=|\nabla u|^{p-2} \Delta f+(p-2)|\nabla u|^{p-4}(\text { Hess } f)(\nabla u, \nabla u),
$$

and estimate $P(u)|\nabla u|^{p}$.
In this kind of expressions and computation, we have to deal with higher order derivatives. It is well known
that weak solutions of equations such as 1.1, belong to $W^{1, p}(M) \cap C^{1, \alpha}(M)$, for some $0<\alpha<1$. Under same conditions on F, such that F is a Caratheodory function and satisfy the following growth condition

$$
\begin{equation*}
|F(x, u, \nabla u)| \leq C(1+\|\nabla u\|)^{p}, \tag{1.3}
\end{equation*}
$$

for some positive constant C and all $\mu \in \mathbb{R}^{d}-\{0\}$, for example see [4], [11], and 1.1 will never yield a nontrivial solution in class C^{2}, as stated by maximum principle. In fact, if u belongs to class C^{2} everywhere, we can rephrase equation 1.1 accordingly:

$$
|\nabla u|^{p-2} \Delta u+(p-2)|\nabla u|^{p-4}(\text { Hess } u)(\nabla u, \nabla u)+F(x, u, \nabla u)=-\lambda|u|^{p-2} u \text {. }
$$

If $|\nabla u|=0$ at x_{0}, then by assumption on $F, u\left(x_{0}\right)=0$ and due to the compact nature of M, it follows that $\max u=\min u=0$, which is contrary to $u \not \equiv 0$.
For a good reference of this kind of results, one can refer to [11].

2. Linearization of p-Laplacian and lemmas

In this section, we shall prove some calculation lemmas.
In the beginning, we employ a naive approach to estimate the linearization of the p-Laplacian near u, i.e., for every function $u \in C^{1}(M)$ and $f \in C^{2}(M)$, let

$$
\begin{aligned}
L(u) f \equiv & \left.\frac{d}{d t}\right|_{t=0} \Delta_{p}(u+t f)=\operatorname{div}\left((p-2)|\nabla u|^{p-4}\langle\nabla u, \nabla f\rangle \nabla u+|\nabla u|^{p-2} \nabla f\right) \\
= & (p-2) \Delta_{p} u \frac{\langle\nabla u, \nabla f\rangle}{|\nabla u|^{2}}+(p-2)|\nabla u|^{p-2}\left\langle\nabla u, \nabla \frac{\langle\nabla u, \nabla f\rangle}{|\nabla u|^{2}}\right\rangle+ \\
& \quad(p-2)|\nabla u|^{p-4}(\text { Hess } u)(\nabla u, \nabla f)+|\nabla u|^{p-2} \Delta f \\
= & |\nabla u|^{p-2} \Delta f+(p-2)|\nabla u|^{p-4}(\text { Hess } f)(\nabla u, \nabla u)+(p-2) \nabla_{p} u \frac{\langle\nabla u, \nabla f\rangle}{|\Delta u|^{2}} \\
+ & 2(p-2)|\nabla u|^{p-4}(\text { Hess } u)\left(\nabla u, \nabla f-\frac{\nabla u}{|\nabla u|}\left\langle\frac{\nabla u}{|\nabla u|}, \nabla f\right\rangle\right) .
\end{aligned}
$$

Now if u is an eigenfunction of the equation $\Delta_{p} u=-\lambda|u|^{p-2} u$, the pointwise definition of this operator only applies when the gradient of u is nonzero (and so u is locally smooth), so it can be easily demonstrated that it is strictly elliptic at these points.
For convenience, denote by $P(u) f$ the second order part of $L(u)$, which is

$$
\begin{equation*}
P(u) f \equiv|\nabla u|^{p-2} \Delta f+(p-2)|\nabla u|^{p-4}(\text { Hess } f)(\nabla u, \nabla u), \tag{2.1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
P(u) f \equiv\left[|\nabla u|^{p-2} \delta_{i j}+(p-2)|\nabla u|^{p-4} u_{i} u_{j}\right] f_{i j} . \tag{2.2}
\end{equation*}
$$

The primary symbol of $P(u)$ is non-negative in all areas and strictly positive around points where ∇u is not null.
In regards to a local orthonormal frame field $\left\{e_{1}, \cdots, e_{n}\right\}$, we possess

$$
\begin{equation*}
P(u) f=\sum_{i, j} p_{i j}(u) f_{i j}, \tag{2.3}
\end{equation*}
$$

where $p_{i j}(u)=|\nabla u|^{p-2} \delta_{i j}+(p-2)|\nabla u|^{p-4} u_{i} u_{j}$.
If u is of class $C^{2}(M)$, then $P(u) u=\Delta_{p} u$ and $L(u) u=(p-1) \Delta_{p} u$.
The aim of linearized p-Laplacian is to achieve a version of the recognized Bochner formula that can be applied to equation 1.1.

The following two lemmas are necessary. Identities $\left(|\nabla u|^{2}\right)_{i}=2 \sum_{j} u_{j} u_{j i}$ and $\nabla\left(|\nabla u|^{2}\right)=2|\nabla u| \nabla|\nabla u|$, are straightforward.

Lemma 2.1. If a function u is of class C^{2}, then

$$
\begin{aligned}
& \left.\sum_{i, j} u_{i} u_{j} u_{j i}=\left.\frac{1}{2}\langle\nabla u, \nabla| \nabla u\right|^{2}\right\rangle \leq|\nabla u|^{2}|\nabla| \nabla u| |, \\
& \sum_{i, j, k} u_{i} u_{j} u_{k i} u_{k j}=\left.|\nabla u|^{2}|\nabla| \nabla u\right|^{2} .
\end{aligned}
$$

Lemma 2.2. In the case of a weak solution u to equation 1.1, the following identity hold:

$$
\left.|\nabla u|^{p-2} \Delta u+F(x, u, \nabla u)=-\left.\frac{p-2}{2}|\nabla u|^{p-4}\langle\nabla u, \nabla| \nabla u\right|^{2}\right\rangle-\lambda|u|^{p-2} u
$$

at every point, where $\nabla u \neq 0$.
Lemma 2.3. When u is an eigenfunction of equation 1.1and $\nabla u \neq 0$:

$$
P(u)\left(|u|^{p}\right)=p(p-1)^{2}|u|^{p-2}|\nabla u|^{p}-\lambda p|u|^{2 p-2}-p F(x, u, \nabla u)|u|^{p-2} u .
$$

Proof. With an immediate calculation of 2.3, we can see that

$$
\begin{aligned}
\left(|u|^{p}\right)_{i j} & =p(p-2)|u|^{p-4} u^{2} u_{i} u_{j}+p|u|^{p-2} u_{i} u_{j}+p|u|^{p-2} u u_{i j} \\
& =p(p-1)|u|^{p-2} u_{i} u_{j}+p|u|^{p-2} u u_{i j}
\end{aligned}
$$

so

$$
\begin{aligned}
P(u) & \left(|u|^{p}\right)=\sum_{i, j} p_{i j}(u)\left(|u|_{i j}\right)^{p} \\
& =p(p-1)|u|^{p-2}\left(|\nabla u|^{p}+(p-2)|\nabla u|^{p-4} \sum_{i, j} u_{i}^{2} u_{j}^{2}\right)+p|u|^{p-2} u(P(u) u) \\
& =p(p-1)^{2}|u|^{p-2}|\nabla u|^{p}-\lambda p|u|^{2 p-2}-p F(x, u, \nabla u)|u|^{p-2} u .
\end{aligned}
$$

Lemma 2.4. For $u \in C^{3}(M)$,

$$
\begin{aligned}
& P(u)\left(|\nabla u|^{p}\right)=p|\nabla u|^{2 p-4} \sum_{i, k} u_{k i}^{2}+p(p-2)|\nabla u|^{2 p-6} \sum_{i, j, k} u_{i} u_{j} u_{k i} u_{k j} \\
& \quad+p|\nabla u|^{2 p-4} \sum_{k} u_{k}(\Delta u)_{k}+p(p-2)|\nabla u|^{2 p-6} \sum_{i, j, k} u_{k} u_{i} u_{j} u_{i k j} \\
& \quad+p|\nabla u|^{2 p-4} \sum_{i, j} R_{i j} u_{i} u_{j}+p(p-2)|\nabla u|^{2 p-6} \sum_{i, k, l} u_{l} u_{k} u_{l i} u_{k i} \\
& \quad+p(p-2)^{2}|\nabla u|^{2 p-8} \sum_{i, j, k, l} u_{i} u_{j} u_{l} u_{k} u_{l j} u_{k i} .
\end{aligned}
$$

Proof. First by the Ricci formula, we have $u_{k i j}=u_{i j k}+\sum_{l} R_{j k i l} u_{l}$, so

$$
\begin{aligned}
\left(|\nabla u|^{p}\right)_{i j}= & \left(p|\nabla u|^{p-2} \sum_{k} u_{k} u_{k i}\right)_{j}=p|\nabla u|^{p-2} \sum_{k} u_{k i} u_{k j}+p|\nabla u|^{p-2} \sum_{k} u_{k} u_{k i j} \\
& +p(p-2)|\nabla u|^{p-4} \sum_{k, l} u_{l} u_{k} u_{l j} u_{k i}
\end{aligned}
$$

and

$$
\begin{aligned}
& P(u)\left(|\nabla u|^{p}\right)=\sum_{i, j} p_{i j}(u)\left(|\nabla u|^{p}\right)_{i j}=p|\nabla u|^{p-2} \sum_{i, j, k} p_{i j}(u) u_{k i} u_{k j}+ \\
& p|\nabla u|^{p-2} \sum_{i, j, k} p_{i j}(u) u_{k} u_{i j k}+p(p-2)|\nabla u|^{p-4} \sum_{i, j, k, l} p_{i j}(u) u_{l} u_{k} u_{l j} u_{k i} \\
& +p|\nabla u|^{p-2} \sum_{i, j, k, l} p_{i j}(u) u_{k} R_{j k i l} u_{l}=p(p-2)^{2}|\nabla u|^{2 p-8} \sum_{i, j, k, l} u_{i} u_{j} u_{l} u_{k} u_{l j} u_{k i} \\
& +p|\nabla u|^{2 p-4} \sum_{i, k}\left(u_{k i}\right)^{2}+p(p-2)|\nabla u|^{2 p-6} \sum_{i, j, k} u_{i} u_{j} u_{k i} u_{k j} \\
& +p|\nabla u|^{2 p-4} \sum_{i, k} u_{k} u_{i i k}+p(p-2)|\nabla u|^{2 p-6} \sum_{i, j, k} u_{k} u_{i} u_{j} u_{i j k} \\
& +p|\nabla u|^{p-2} \sum_{i, j, k, l} p_{i j}(u) u_{k} R_{j k i l} u_{l}+p(p-2)|\nabla u|^{2 p-6} \sum_{i, k, l} u_{l} u_{k} u_{l i} u_{k i} .
\end{aligned}
$$

However, it is established that $\sum_{i} u_{i i k}=(\Delta u)_{k}$. Additionally, according to Bianchi's formula, term $\sum_{i, j, k, l} p_{i j}(u) u_{k} R_{j k i l} u_{l}$, implies that $R_{i j k l}+R_{j k i l}+R_{k i j l}=0$. Furthermore, considering the definition of $R_{k l}\left(:=\sum_{i} R_{i k i l}\right)$, it can be concluded that

$$
\begin{aligned}
& \sum_{i, j, k, l} p_{i j} R_{j k i l} u_{k} u_{l}=|\nabla u|^{p-2} \sum_{i, k, l} R_{i k i l} u_{k} u_{l} \\
& \quad+(p-2)|\nabla u|^{p-4} \sum_{l} u_{l}\left(\sum_{i, j, k} u_{i} u_{j} u_{k} R_{j k i l}\right)=|\nabla u|^{p-2} \sum_{k, l} R_{k l} u_{k} u_{l}
\end{aligned}
$$

This equality finishes the proof.
Lemma 2.5. Suppose u is an eigenfunction of equation 1.1. At any point where $\nabla u \neq 0$, the following applies,

$$
\begin{aligned}
& |\nabla u|^{p} \sum_{k} u_{k}(\Delta u)_{k}+(p-2)|\nabla u|^{p-2} \sum_{i, j, k} u_{i} u_{j} u_{k} u_{i j k}=-\lambda(p-1)|u|^{p-2}|\nabla u|^{4} \\
& \quad-(p-2)|\nabla u|^{p-2} \sum_{i, j, k}\left(u_{k} u_{l} u_{j k} u_{l j}+u_{k} u_{j} u_{l k} u_{l j}\right)+(p-2) F \sum_{i, k} u_{i} u_{k} u_{i k} \\
& \quad+2(p-2)|\nabla u|^{p-4} \sum_{i, j, k, l} u_{i} u_{j} u_{k} u_{l} u_{i k} u_{j l}-|\nabla u|^{2} \sum_{k} u_{k} F_{k} \\
& \quad+\lambda(p-2) u|u|^{p-2} \sum_{i, k} u_{i} u_{k} u_{i k}
\end{aligned}
$$

Proof. It is easy to obtain

$$
\Delta_{p} u=|\nabla u|^{p-2} \Delta u+(p-2)|\nabla u|^{p-4} \sum_{j, l} u_{j} u_{l} u_{j l} .
$$

By applying the $(.)_{k}$ on both sides of equation 1.1,

$$
\begin{aligned}
& |\nabla u|^{p-2}(\Delta u)_{k}+(p-2) \Delta u|\nabla u|^{p-4} \sum_{i} u_{i} u_{i k}+ \\
& \quad(p-2)(p-4)|\nabla u|^{p-6} \sum_{i, j, l} u_{i} u_{i k} u_{j} u_{l} u_{j l} \\
& \quad+(p-2)|\nabla u|^{p-4} \sum_{j, l}\left(u_{j k} u_{l} u_{j l}+u_{j} u_{l k} u_{j l}+u_{j} u_{l} u_{j l k}\right) \\
& \quad+F_{k}=-\lambda(p-1)|u|^{p-2} u_{k} .
\end{aligned}
$$

Given the operation of multiplying $|\nabla u|^{2} u_{k}$ to both sides and applying summation on k, and considering the fact that u is an eigenfunction of equation 1.1, it can be deduced that

$$
\begin{aligned}
& |\nabla u|^{p} \sum_{k} u_{k}(\Delta u)_{k}-(p-2)\left(\lambda u|u|^{p-2}+F+(p-2)|\nabla u|^{p-4} \sum_{j, l} u_{j} u_{l} u_{j l}\right) \times \\
& \quad \sum_{i, k} u_{i} u_{k} u_{i k}+(p-2)(p-4)|\nabla u|^{p-4} \sum_{i, j, k, l} u_{i} u_{j} u_{k} u_{l} u_{i k} u_{j l}+(p-2)|\nabla u|^{p-2} \times \\
& \quad\left(\sum_{j, k, l} u_{k} u_{l} u_{j k} u_{j l}+u_{k} u_{j} u_{l k} u_{j l}+u_{k} u_{j} u_{l} u_{j l k}\right)+|\nabla u|^{2} \sum_{k} u_{k} F_{k} \\
& \quad=-\lambda(p-1)|u|^{p-2}|\nabla u|^{2} \sum_{k}\left(u_{k}\right)^{2} .
\end{aligned}
$$

This proves the lemma.
Now we can obtain a formula of the Bochner-Weitzonbeak type for eigenfunctions of 1.1.
Proposition 2.6. Let M be a Riemannian manifold of nonnegative Ricci curvature, and u be an eigenfunction of 1.1. Then when $\nabla u \neq 0$, the subsequent inequality is valid:

$$
\begin{aligned}
& \frac{1}{p} P(u)\left(|\nabla u|^{p}\right) \geq(p-1)^{2}|\nabla u|^{2 p-4} A_{u}^{2}+\lambda(p-2)|\nabla u|^{p-2}|u|^{p-2} u A_{u} \\
& \quad+(p-2)|\nabla u|^{p-2} A_{u} F-\lambda(p-1)|\nabla u|^{p}|u|^{p-2}-|\nabla u|^{p-2}\langle\nabla F, \nabla u\rangle \\
& \quad+(p-2)|\nabla u|^{2 p-6} \sum_{i, j, k} u_{i} u_{j}\left(u_{i k}-u_{k i}\right) u_{j k},
\end{aligned}
$$

where $A_{u}=\frac{|H e s s ~ u|(\nabla u, \nabla u)}{|\nabla u|^{2}}$.
Proof. Through the lemmas stated above, and with the calculation of the left side, we can conclude

$$
\begin{aligned}
& \frac{1}{p} P(u)\left(|\nabla u|^{p}\right)=|\nabla u|^{p-2}\left[\left\langle\nabla\left(\Delta_{p} u\right), \nabla u\right\rangle-(p-2) A_{u} \Delta_{p} u\right] \\
& \quad+|\nabla u|^{2 p-4}\left[\mid \text { Hess }\left.u\right|^{2}+\operatorname{Ric}(M)(\nabla u, \nabla u)\right] \\
& \quad+(p-2)|\nabla u|^{2 p-6} \sum_{i, j, k} u_{i} u_{j}\left(u_{i k}-u_{k i}\right) u_{j k} .
\end{aligned}
$$

In the above computation, we note that, $\operatorname{Ric}(M)(\nabla u, \nabla u)=\sum_{i, j} R_{i j} u_{i} u_{j},|\operatorname{Hess} u|^{2}=\sum_{i, j}\left(u_{i j}\right)^{2}$, and

$$
-\lambda(p-1)|u|^{p-2}|\nabla u|^{4-p}-|\nabla u|^{2-p} \sum_{k} u_{k} F_{k}=|\nabla u|^{2-p}\left\langle\nabla\left(\Delta_{p} u\right), \nabla u\right\rangle .
$$

Now in this identity, since $\operatorname{Ric}(M) \geq 0,|\operatorname{Hess} u|^{2} \geq A_{u}^{2}$, and u is an eigenfunction of 1.1 , we have

$$
\begin{aligned}
& \frac{1}{p} P(u)\left(|\nabla u|^{p}\right) \geq|\nabla u|^{p-2}\left\langle\nabla\left(-\lambda|u|^{p-2} u-F(u)\right), \nabla u\right\rangle+(p-2)|\nabla u|^{p-2} A_{u} \times \\
& \quad\left(\lambda|u|^{p-2} u+F\right)+(p-1)^{2}|\nabla u|^{2 p-4} A_{u}^{2}+(p-2)|\nabla u|^{2 p-6} \sum_{i, j, k} u_{i} u_{j}\left(u_{i k}-u_{k i}\right) u_{j k} \\
& \quad=\lambda(p-2)|\nabla u|^{p-2}|u|^{p-2} u A_{u}+(p-2)|\nabla u|^{p-2} A_{u} F \\
& \quad-\lambda|\nabla u|^{p-2}\left\langle\nabla\left(|u|^{p-2} u\right), \nabla u\right\rangle-|\nabla u|^{p-2}\langle\nabla F, \nabla u\rangle+(p-1)^{2}|\nabla u|^{2 p-4} A_{u}^{2} \\
& \quad+(p-2)|\nabla u|^{2 p-6} \sum_{i, j, k} u_{i} u_{j}\left(u_{i k}-u_{k i}\right) u_{k} \geq(p-1)^{2}|\nabla u|^{2 p-4} A_{u}^{2} \\
& \quad+\lambda(p-2)|\nabla u|^{p-2}|u|^{p-2} u A_{u}+(p-2)|\nabla u|^{p-2} A_{u} F-\lambda(p-1)|\nabla u|^{p}|u|^{p-2} \\
& \quad-|\nabla u|^{p-2}\langle\nabla F, \nabla u\rangle+(p-2)|\nabla u|^{2 p-6} \sum_{i, j, k} u_{i} u_{j}\left(u_{i k}-u_{k i}\right) u_{j k}
\end{aligned}
$$

Remark 2.7. In order to improve the accuracy of our estimation, we can utilize a more sophisticated approach for calculating \mid Hess $\left.u\right|^{2}$ in linear scenarios:

$$
|H e s s u|^{2} \geq \frac{(\Delta u)^{2}}{n}+\frac{n}{n-1}\left(\frac{\Delta u}{n}-A_{u}\right)^{2}
$$

and get a better estimate.

3. Proof of main Results

Our focus now shifts to establishing a gradient estimate for eigenfunctions. To begin, we will consider a weak solution u that belongs to the class $W^{1, p}(M)$ and fulfills equation 1.1. As stated $u \in C^{1, \alpha}$, for some $0<\alpha<1$.
The identity $\int_{M} u|u|^{p-2} d \nu=0$, implies that u changes sign. Set $\beta=\mu\left(\sup _{M} u\right)^{p}$, where $\mu>1$.
Proof of 1.2: We consider a continuous function $G=\frac{|\nabla u|^{p}}{\beta-|u|^{p}}, A=\beta-|u|^{p}$.
This function achieves it's maximum at a point $x_{0} \in M$. We also assume that $\nabla u \neq 0$. From regularity of elliptic equations, G is smooth function around x_{0}.
The maximum principle implies that

$$
\begin{gathered}
\nabla G\left(x_{0}\right)=0 \\
(P(u) G)\left(x_{0}\right) \leq 0
\end{gathered}
$$

To accurately represent the solution u, we take a local orthonormal frame field $\left\{e_{1}, \cdots, e_{n}\right\}$ centered around x_{0}, so we have $u_{1}=|\nabla u|$, and $u_{i}=0$, for $i \geq 2$. At x_{0}, from $\nabla G=0$ we have

$$
\sum_{j}|\nabla u|^{p-2} u_{j} u_{j i}+|\nabla u|^{p}|u|^{p-2} u \frac{u_{i}}{A}=0, \quad \text { for } \quad i=1, \cdots, n
$$

With above assumption on local orthonormal frame, we have

$$
u_{1 j}=0 \quad(\text { for } \quad j \geq 2), \quad u_{1}^{p-2} u_{11}=-u|u|^{p-2} G
$$

Employing lemmas in the previous section, we have

$$
\begin{aligned}
P(u)\left(|u|^{p}\right) & =p(p-1)^{2}|u|^{p-2}|\nabla u|^{p}-\lambda p|u|^{2 p-2}-p F(x, u, \nabla u)|u|^{p-2} u \\
& =p(p-1)^{2}|u|^{p-2} u_{1}^{p}-\lambda p|u|^{2 p-2}-p F|u|^{p-2} u
\end{aligned}
$$

and

$$
\begin{aligned}
& P(u)\left(|\nabla u|^{p}\right)=p|\nabla u|^{2 p-4} \sum_{i, k} u_{k i}^{2}+p(p-2)|\nabla u|^{2 p-6} \sum_{i, j, k} u_{i} u_{j} u_{k i} u_{k j} \\
& \quad+p|\nabla u|^{2 p-4} \sum_{k} u_{k}(\Delta u)_{k}+p(p-2)|\nabla u|^{2 p-6} \sum_{i, j, k} u_{k} u_{i} u_{j} u_{i k j} \\
& \quad+p|\nabla u|^{2 p-4} \sum_{i, j} R_{i j} u_{i} u_{j}+p(p-2)|\nabla u|^{2 p-6} \sum_{i, k, l} u_{l} u_{k} u_{l i} u_{k i} \\
& \quad+p(p-2)^{2}|\nabla u|^{2 p-8} \sum_{i, j, k, l} u_{i} u_{j} u_{l} u_{k} u_{l j} u_{k i}=p u_{1}^{2 p-4}\left(\sum_{i, k} u_{k i}^{2}+(p-2) \sum_{k} u_{k 1}^{2}\right) \\
& \quad+p u_{1}^{2 p-3}(\Delta u)_{1}+p(p-2) u_{1}^{2 p-3} u_{111}+p u_{1}^{2 p-2} R_{11}+p(p-2) u_{1}^{2 p-4} u_{11}^{2} \\
& \quad+p(p-2)^{2} u_{1}^{2 p-4} u_{11}^{2}=p u_{1}^{2 p-4}\left(\sum_{i, k} u_{k i}^{2}+(p-2) \sum_{k} u_{k 1}^{2}\right) \\
& \quad+p u_{1}^{2 p-3}\left((\Delta u)_{1}+(p-2) u_{111}\right)+p u_{1}^{2 p-2} R_{11}+p(p-2)(p-1) u_{1}^{2 p-4} u_{11}^{2}
\end{aligned}
$$

that is $\operatorname{Ric}(M) \geq 0$, and $\sum_{i, k} u_{k i}^{2} \geq \sum_{k} u_{k 1}^{2}>u_{11}^{2}$,

$$
P(u)\left(|\nabla u|^{p}\right)>p(p-1)^{2} u_{1}^{2 p-4} u_{11}^{2}+p u_{1}^{2 p-3}\left((\Delta u)_{1}+(p-2) u_{111}\right) .
$$

From lemma 2.5,

$$
\begin{aligned}
u_{1}^{p+1}(\Delta u)_{1} & +(p-2) u_{1}^{p+1} u_{111}=-\lambda(p-1) u_{1}^{4}|u|^{p-2}-2(p-2) u_{1}^{p} u_{11}^{2}+(p-2) F u_{1}^{2} u_{11} \\
& +2(p-2) u_{1}^{p} u_{11}^{2}-u_{1}^{p-1} F_{1}+\lambda(p-2) u|u|^{p-2} u_{1}^{2} u_{11},
\end{aligned}
$$

or

$$
\begin{aligned}
u_{1}^{p+1}\left((\Delta u)_{1}+(p-2) u_{111}\right) & =(p-2) F u_{11}^{2} u_{11}-u_{1}^{p-1} F_{1}-\lambda(p-1) u_{1}^{4}|u|^{p-2} \\
& +\lambda(p-2) u u_{1}^{2} u_{11}|u|^{p-2} .
\end{aligned}
$$

Recall the identity $|\nabla u|^{p}=A G$. Applying $P(u)$ to both sides $\nabla G\left(x_{0}\right)=0$ and $P(u) G\left(x_{0}\right) \leq 0$,

$$
\begin{aligned}
P(u) & \left(|\nabla u|^{p}\right)=P(u)(A G)=\sum_{i, j} p_{i j}\left(A_{i j} G+A_{i} G_{j}+A_{j} G_{i}+A G_{i j}\right) \\
& =|\nabla u|^{p-2} \sum_{i}\left(A_{i i} G+2 A_{i} G_{i}+A G_{i i}\right) \\
& +(p-2)|\nabla u|^{p-4} \sum_{i, j}\left(A_{i j} G+A_{i} G_{j}+A_{j} G_{i}+A G_{i j}\right)
\end{aligned}
$$

Then at x_{0},

$$
\begin{aligned}
P(u) & \left(|\nabla u|^{p}\right)\left(x_{0}\right)=|\nabla u|^{p-2} \sum_{i}\left(A_{i i} G+A G_{i i}\right)+(p-2)|\nabla u|^{p-4} u_{1}^{2}\left(A_{11} G+A G_{11}\right) \\
& =u_{1}^{p-2}\left[\sum_{i}\left(A_{i i} G+A G_{i i}\right)+(p-2) A_{11} G+(p-2) A G_{11}\right] .
\end{aligned}
$$

But in $x_{0}, P(u) G \leq 0$ so $\quad \sum_{i, j} p_{i j} G_{i j} \leq 0$ and then

$$
(p-2) G_{11}+\sum_{i} G_{i i} \leq 0
$$

Hence

$$
P(u)\left(|\nabla u|^{p}\right)\left(x_{0}\right) \leq u_{1}^{p-2}\left[(p-2) A_{11}+\sum_{i} A_{i i}\right] G
$$

Also $A=\beta-|u|^{p}$ implies that

$$
A_{i i}=-p\left[(p-2)|u|^{p-4} u^{2} u_{i}^{2}+|u|^{p-2} u_{i}^{2}+|u|^{p-2} u u_{i i}\right]
$$

For this point x_{0},
if $\quad i=1, \quad A_{11}=-p(p-1)|u|^{p-2} u_{1}^{2}-p|u|^{p-2} u u_{11}$ and for $i>1, \quad A_{i i}=-p|u|^{p-2} u u_{i i}$.
Therefore,

$$
\begin{aligned}
& P(u)\left(|\nabla u|^{p}\right)\left(x_{0}\right) \leq-p G|u|^{p-2} u_{1}^{p-2}\left[(p-1) u_{1}^{2}+|u|^{p-2} u u_{11}+\sum_{i} u u_{i i}+(p-2) u u_{11}\right. \\
& \left.\quad+(p-1)(p-2) u_{1}^{2}\right]=-G\left[p(p-1)^{2}|u|^{p-2} u_{1}^{p}-\lambda p|u|^{2 p-2}-p F u|u|^{p-2}\right]
\end{aligned}
$$

and then

$$
P(u)\left(|\nabla u|^{p}\right)\left(x_{0}\right) \leq-G P(u)\left(|u|^{p}\right)\left(x_{0}\right)
$$

Combining the above inequalities, at x_{0},

$$
-G P\left(|u|^{p}\right) \geq P\left(|\nabla u|^{p}\right)
$$

so

$$
\begin{aligned}
& -G\left(p(p-1)^{2}|u|^{p-2} u_{1}^{p}-\lambda p|u|^{2 p-2}-p F|u|^{p-2} u\right)>p(p-1)^{2} u_{1}^{2 p-4} u_{11}^{2} \\
& +p u_{1}^{2 p-3}\left((\Delta u)_{1}+(p-2) u_{111}\right)=p(p-1)^{2} u_{1}^{2 p-4} u_{11}^{2} \\
& +p u_{1}^{p-4}\left((p-2) F u_{1}^{2} u_{11}-u_{1}^{p-1} F_{1}-\lambda(p-1) u_{1}^{4}|u|^{p-2}+\lambda(p-2) u u_{1}^{2} u_{11}|u|^{p-2}\right)
\end{aligned}
$$

Finally

$$
u_{1}^{2 p-5} F_{1}+\lambda \beta(p-1) G|u|^{p-2}+(p-1) u|u|^{p-2} F G>\beta G^{2}(p-1)^{2}|u|^{p-2}
$$

or

$$
\frac{u_{1}^{2 p-5}}{(p-1) G \beta|u|^{p-2}}\left\|F_{1}\right\|_{\infty}+\lambda+\frac{u}{\beta} F>G(p-1)
$$

Now as for boundedness of $\left\|F_{1}\right\|_{\infty},\|F\|_{\infty}$, as well as $u_{1},|u|$ at the point x_{0}, while μ is sufficiently near to 1 , we are able to pass from the first term and coefficient of F and get $\lambda+F \geq G(p-1)$.

Proof of 1.3. First, recall a well-known inequality in which for any $n>1$:

$$
|a+b|^{n} \leq 2^{n-1}\left(|a|^{n}+|b|^{n}\right) .
$$

Let $x_{1}, x_{2} \in M$, such that $0<u\left(x_{1}\right)=\sup u, u\left(x_{2}\right)=0$, and consider a minimal normal geodesic γ, whit $\gamma(0)=x_{2}$ to $\gamma(1)=x_{1}$.
Due to the fact that $\operatorname{dist}\left(x_{2}, x_{1}\right) \leq d$, and with the considering circumstance 1.3 on F, we have

$$
\begin{aligned}
& \lambda+C(1+|\nabla u|)^{p} \geq(p-1) G \\
& \sqrt[p]{\frac{\lambda}{(p-1) 2^{p-1}}}+\sqrt[p]{\frac{C}{(p-1) 2^{p-1}}}(1+|\nabla u|) \geq \frac{|\nabla u|}{\left(\beta-|u|^{p}\right)^{\frac{1}{p}}}
\end{aligned}
$$

Integrating along γ from x_{2} to x_{1} and then changing the variable, we obtain that

$$
d \frac{\lambda^{\frac{1}{p}}+C^{\frac{1}{p}}}{\left((p-1) 2^{p-1}\right)^{\frac{1}{p}}}+\frac{C^{\frac{1}{p}}}{\left((p-1) 2^{p-1}\right)^{\frac{1}{p}}} \int_{x_{2}}^{x_{1}}|\nabla u| \geq \int_{x_{2}}^{x_{1}} \frac{|\nabla u|}{\left(\beta-|u|^{p}\right)^{\frac{1}{p}}}
$$

or after simplification

$$
\begin{aligned}
& d \frac{\lambda^{\frac{1}{p}}+C^{\frac{1}{p}}}{\left((p-1) 2^{p-1}\right)^{\frac{1}{p}}}+\frac{C^{\frac{1}{p}}}{\left((p-1) 2^{p-1}\right)^{\frac{1}{p}}} \int_{0}^{\sup u} d u \geq \int_{0}^{\sup u} \frac{d u}{\left(\beta-|u|^{p}\right)^{\frac{1}{p}}} \\
& \quad=\int_{0}^{1} \frac{d u}{\left(1-|u|^{p}\right)^{\frac{1}{p}}}=\frac{\pi}{p \sin \left(\frac{\pi}{p}\right)} .
\end{aligned}
$$

Therefore,

$$
\lambda \geq\left[\frac{1}{d}\left(\frac{\pi\left((p-1) 2^{p-1}\right)^{\frac{1}{p}}}{p \sin \left(\frac{\pi}{p}\right)}-C^{\frac{1}{p}} \beta\right)-C^{\frac{1}{p}}\right]^{p} .
$$

References

[1] B. Colbois, E. Dryden and A. El Soul, Bounding the eigenvalues of the Laplace-Beltrami operator on compact submanifolds, Bull. London Math. Soc., 42, No. 1 (2010), 96-108.
[2] B. Colbois and D. Maerten, Eigenvalues estimate for the Neumann problem of a bounded domain, J. Geom. Analysis, 18, No. 4 (2008), 1022-1032.
[3] A. Le, Eigenvalue problems for the p-Laplacian, Nonlinear Anal., 64 (2006), 1057-1099.
[4] H. Takeuchi, On the first eigenvalue of the p-Laplacian in a Riemannian manifold, Tokyo J. Math., 21 (1998), 135-140.
[5] X. Jiang, Gradient estimate for a nonlinear heat equation on Riemannian manifolds, Proc. Amer. Math. Soc., 144 (2016), 3635-3642.
[6] A. El Soufi, E. Harrell and S. Ilias, Universal inequalities for the eigenvalues of Laplace and Schrodinger operators on submanifolds Trans, Amer. Math. Soc., 361, No. 5 (2009), 2337-2350.
[7] J.F. Grosjean, p-Laplace operator and diameter of manifolds, Ann. Global Anal. Geom., 28 (2005), 257-270.
[8] J.Q. Zhong and H.C. Yang, On the estimate of the first eigenvalue of a compact Riemannian manifold, Sci. Sinica Ser. A, 27 (1984), 1265-1273.
[9] S. Kawai and N. Nakauchi, The first eigenvalue of the p-Laplacian on a compact Riemannian manifold, Nonlinear Anal., 55 (2003), 33-46.
[10] P. Li and S.T. Yau, Estimates of eigenvalues of a compact Riemannian manifold. In Geometry of the Laplace operator, Univ. Hawaii, Honolulu, Hawaii, (1979), Proc. Sympos. Pure Math., XXXVI, pages 205-239. Amer. Math. Soc., Providence, R.I., 1980.
[11] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.

[^0]: 2010 Mathematics Subject Classification. 40J40, 47H05, 47J25, 47J20, 49J53.
 Key words and phrases. Eigenvalue, perturbated p-Laplacian, gradient estimate.

 * Corresponding author. Email: latifi.mmali@gmail.com.

