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ABSTRACT.

This paper deals with the nonlinear eigenvalue problem, for perturbated p-Laplacian operator, on
a compact Riemannian manifold and determines a gradient estimate of eigenfunction associated
with (first) eigenvalue of perturbated p-Laplacian operator. Using this estimate, we find a lower
bound for this eigenvalue. In this paper we investigate the first (principal) nonlinear eigenvalue
of the perturbated p-Laplacian on compact Riemannian manifolds and provide a lower bound
through use of the diameter and the inscribed radius in terms of geometric quantities of manifold,
and properties of disturbed term, when the Ricci curvature is non-negative. There are many
results on the lower bound estimates for principal eigenvalues and eigenfunctions for domains in
Euclidean space examined in multiple research papers. For a compact manifold with no boundary,
for Laplace operator, i.e. p = 2, a sharp lower bound estimate on a compact Riemannian manifold
with nonnegative Ricci curvature is known. Through a process of computation which involves
Lagrange multipliers, it can be demonstrated.

1. INTRODUCTION

The main objective of this paper is to investigate the first (principal) nonlinear eigenvalue of the per-
turbated p-Laplacian on compact Riemannian manifolds and provide a lower bound through use of the
diameter and the inscribed radius in terms of geometric quantities of manifold, and properties of disturbed
term, when the Ricci curvature is non-negative. We denote by A, the p-laplacian, i.e.

Apu = —div (|VulP V),
and consider the following nonlinear eigenvalue problem:
Apu+ F (z,u(z), Vu(z)) = —Au|P2u, u# 0. (1.1)

The examination of lower bound approximations for principal eigenvalues and eigenfunctions in Euclidean
space domains has been a topic of interest in numerous research papers (e.g. [1],[2],[3],[4],[5], [6],[7]).

For a compact manifold with no boundary, we set A1, as the infimum of positive A such that there is
u Z 0 for which

Apu = —A|ulP2u.
It has been determined in [8], that a compact Riemannian manifold with non-negative Ricci curvature has
a sharp lower bound estimate for the Laplace operator, i.e. p = 2,
2
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Through a process of computation which involves Lagrange multipliers, it can be demonstrated that this is
equivalent to

Al,p:inf{W;O#uewl’p(M) , /M|u|p2u:0}. (1.2)

Remark 1.1. Utilizing the same method, a similar expression is shown to be valid for 1.1.

Kawai and Nakauchi in [9], have shown that for a compact Riemannian manifold M without boundary
and p > 2, if the inequality Ric(M) > 0 holds, then we have

> 1 <7r)p 1
=1 \a) ar
where, the diameter of M is denoted by d, while Ric(M) stands for the Ricci curvature of M. The purpose

of this paper is to present a gradient estimate for eigenfunction and by examining geometrical aspects and
features of the perturbated term, a lower bounds for the principal eigenvalue of 1.1 can be calculated.

Proposition 1.2. [gradient estimate for u] Let M be a compact Riemannian manifold with non-negative
Ricci curvature and u be an eigenfunction in association with the eigenvalue A of 1.1, then
|VulP < A+ F (z,u(z), Vu(x))
B—lulp — p—1 ’

where B having a value of psup |u| and p > 1, is determined eventually.

Theorem 1.3. Let M be a compact Riemannian manifold and p > 2. If \(= A1) be eigenvalue of 1.1,

then
P

—cip| —crl

ISHR

1

T ((p — 1)2p_1) »
psin (%)

under the following condition:

(a) the inequality Ric(M) > 0 holds,

(b) F is a Caratheodory function and |F(z,n,u)| < C (14 |u|)?,

(¢) F(.,0,0) =0.

The conventions we will use are as follows:
(M, (.,.)) represents a Riemannian manifold with nonnegative Ricci curvature, diameter d and dimension n.
For fix p > 1, and a function v : M — R, Hess will represent the Hessian as a (2,0) or (1, 1) tensor, with a
definition. We will use the convention
u; = Veu , U= V;Viu.
It is known that
(Hess u) (Vu,Vf) = Zuijuzfj,
i?j

where u’, f7 are elements of Vu, V f respectively.

Our main results are determined by employing Li-Yau’s gradient estimate method, in [10]. Using the linear

operator P(u), we define a continuous function P(u)f, for every function u in class C* and f in class C?,
P(u)f = [Vul " Af + (p = 2) |Vul"™" (Hess f) (Vu, Vu),

and estimate P(u)|VulP.
In this kind of expressions and computation, we have to deal with higher order derivatives. It is well known
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that weak solutions of equations such as 1.1, belong to WP(M) [ C*(M), for some 0 < o < 1. Under
same conditions on F', such that F'is a Caratheodory function and satisfy the following growth condition

|F(z,u, Vu)| < C(1+||Vul)?, (1.3)

for some positive constant C' and all u € R? — {0}, for example see [4], [11], and 1.1 will never yield a
nontrivial solution in class C?, as stated by maximum principle. In fact, if u belongs to class C? everywhere,
we can rephrase equation 1.1 accordingly:

|VulP2Au + (p — 2)|VulP~* (Hess u) (Vu, Vu) + F(z,u, Vu) = —|ul[P~2u.
If [Vu| = 0 at xo, then by assumption on F,u(zg) = 0 and due to the compact nature of M, it follows that

max v = minwu = 0, which is contrary to u # 0.
For a good reference of this kind of results, one can refer to [11].

2. LINEARIZATION OF P-LAPLACIAN AND LEMMAS

In this section, we shall prove some calculation lemmas.
In the beginning, we employ a naive approach to estimate the linearization of the p-Laplacian near u, i.e.,
for every function v € C'(M) and f € C%(M), let

L= S Ayt tf)=div ((p - 2IVuP ™ (Vu, V1) Vu+ [Vup >V )
t=0
(Vu, Vf) 9 (Vu, Vf)
=(p—2)A,u~—0—>> —9 p \VUu, vVj)
(p—2)Apu Val? + (p—2)|Vu| Vu,V 2 +
(p— 2)]Vu\p_4(Hess u)(Vu, Vf)+ |Vu\p_2Af
= [VulP2Af + (p — 2)|VulP~4(Hess f)(Vu, Vu) + (p — zwpuw
Vu [/ Vu
2(p — 2)|VulP~*(H _ e '
+2(p — 2)|Vul|P~*(Hess u) <Vu,Vf Vul <]Vu\’vf>>
Now if v is an eigenfunction of the equation Apu = — Au[P~2u, the pointwise definition of this operator

only applies when the gradient of u is nonzero (and so u is locally smooth), so it can be easily demonstrated
that it is strictly elliptic at these points.
For convenience, denote by P(u)f the second order part of L(u), which is

Pu)f = |VulP2Af + (p — 2)|Vul|P~* (Hess f) (Vu, Vu), (2.1)
or equivalently
P(u)f = [|[VulP~26i; + (p — 2)| VP uiuy] fij. (2.2)

The primary symbol of P(u) is non-negative in all areas and strictly positive around points where Vu is not
null.

In regards to a local orthonormal frame field {ej,--- ,e,}, we possess
Plu)f = pij(u) fij, (2.3)
i?j

where p;;(u) = [VuP~25;; + (p — 2)|VulP~uu;.

If u is of class C?(M), then P(u)u = Apu and L(u)u = (p — 1)A,u.

The aim of linearized p-Laplacian is to achieve a version of the recognized Bochner formula that can be
applied to equation 1.1.
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The following two lemmas are necessary. Identities (|Vu|2)l = 2> ;ujuj; and V (IVul?) = 2|Vu|V |Vul,
are straightforward.

Lemma 2.1. If a function u is of class C?, then

Zuiujuji = %<VU,V‘VU|2> < |Vu|2)V|Vu|‘,

]

2
Zuiujukiukj = \Vu]z’V\Vu]‘ )
i7j7k

Lemma 2.2. In the case of a weak solution u to equation 1.1, the following identity hold:
|VulP72Au + F(z,u, Vu) = —1%2|Vu]p_4 (Vu, VIVul?) — MulP~?u,
at every point, where Vu # 0.
Lemma 2.3. When u is an eigenfunction of equation 1.1and Vu # 0:
P(u)([u?) = p(p — 1)?*[ulP2[Vul? — Aplu|P™2 — pF(z, u, Vu)|uf~u.
Proof. With an immediate calculation of 2.3, we can see that

p(p — 2)\u|p*4u2uiu3‘ + p|u|p*2uiu3‘ + p|u|p*2uui]~
= p(p — VulP"*usu; + plul’>uu;j,

SO

) ([ul?) me (Juliz)

=p(p = Dl | [Vul? + (p - 2)|VulP~ 4Zu2§ +plufP~?u (P(u)u)

=p(p— 1)2\u|p*2\Vu|p — )\p\u|2p*2 — pF(l‘, u, Vu)|u\p*2u.

Lemma 2.4. For u € C3(M),

P(u) ([Vul?) = p|Vaul~ Y " uj; +p(p — 2)|Vul Y~ wiwjugiug

ik 1,5,k

+ p| VP~ Z up(Au)y, + p(p — 2)|Vu[*~5 Z UR Ui U U
k 1,5,k

+p| VP Z Rijuiuj + p(p — 2)|Vul*~° Z UPUR UL Ui
i ikl

+p(p — 2)2\Vu]2p_8 Z Ui U U U U U -
i’j’k’l
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Proof. First by the Ricci formula, we have ug;j = wiji + Y _; Rjkiius, S0

(IVul?);; = (P’VUVD—Q > Uk“ki) = p|VulP > upiug + plVulP Y upug
K i K k
+p(p = 2)[Vul”™ > wugurjug,
ol

and

P(u) ([Vul?) = pr |VU’p)i]‘ = p‘vu|p*2 sz‘j (u)ugiugj+

1,5,k
p|VulP—? sz‘j (w)upuijr + p(p — 2)|VulP~ Z Pij (W) w g u;
1,5,k 1,5,k
—|—p|Vu]p 2 Z pm ukR]]ﬂlul (p — 2)2’V’u,‘2p78 Z Ui U UL U UL U
1,5,k i,5,k,1
+p|VulP™ > (ui)® + plp — 2)[Vul™ 0 winugiugg
i’k i7j7k
+p|Vul? Z upttiik + p(p — 2)|Vul?~° Z Uk Ui U Uik
i’k i7j7k
+ p|Vu]p’2 Z Dij (u)ukRjkilul + p(p — 2)|Vu\2p’6 Z UUL UL Wi -
i7j7k7l i7k7l

However, it is established that ) u;r = (Au),. Additionally, according to Bianchi’s formula, term
me pij(w)up Rjpauy, implies that Rijn + Rjra + Riiji = 0. Furthermore, considering the definition of
Ryi(:= >, Ririt), it can be concluded that

—2
Zpinjkilukul = |VulP E Ripiuruy
1,5,k ikl

+ (p—2)|VuP™* Z w Z wiujug Rigi | = |VulP~? Z Riguguy.
l i,9,k k,l
This equality finishes the proof. ([l

Lemma 2.5. Suppose u is an eigenfunction of equation 1.1. At any point where Vu # 0, the following
applies,

|VulP Z up(Au)g + (p — 2)|VulP~2 Zuiujukuijk = —\(p—D|uP~2Vul!

k igk
— (0= 2IVuP > (upuujrug; + wpujugug) + (p— 2)F Y ujtgptg
1,9,k 1,k
+2(p — 2)|VulP~* Z U U UK U Ui U j) — |Vu|? Zuka
1,7,k,l

+ Ap— 2)u\u|p_2 Z UiUL Wik
ik
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Proof. 1t is easy to obtain
Apu = |VulP72Au+ (p — 2)|VaulP~ Z U UL
j?l
By applying the (.); on both sides of equation 1.1,
IVulP2(Au)g + (p — 2)Au|VulP ™ uugpt
i

(p—2)(p— DIVuP > usuipujuugy
i?j7l
+ (p — 2)|Vu|p_4 Z (ujkulujl + ujupug + ujulujlk)
j?l
+ Fj, = —A(p — 1)|ulP2uy,.
Given the operation of multiplying |Vu|?u;, to both sides and applying summation on k, and considering
the fact that u is an eigenfunction of equation 1.1, it can be deduced that

|VulP Z up(Au)p — (p—2) [ Mu|uP~2 + F + (p — 2)|Vu|P™ Z ujuug | x
k j7l
Z wiugui + (p— 2)(p — 4)]Vu\p_4 Z U U U UG+ (D — 2)\Vu]p_2><
ik 1,5,k

2
Z U U U U]+ UpUj Ui U] + UpU; WUk | + |V’LL’ Z up F
gkl k

= A(p— Dlul 2 Vu Y (up)?.
k

This proves the lemma. ]
Now we can obtain a formula of the Bochner-Weitzonbeak type for eigenfunctions of 1.1.

Proposition 2.6. Let M be a Riemannian manifold of nonnegative Ricci curvature, and u be an eigenfunc-
tion of 1.1. Then when Vu #£ 0, the subsequent inequality is valid:

1
P (Vel?) > (p = 1P|VaP? AT+ A = 2) [Vl 2 ul 2,

+ (p = 2)|VulP2A,F — Xp — 1)|VulP|ulP~2 — |Vul[P~2 (VF, Vu)
+(p = 2)[Vul*P~° Z wiw; (Uit — ki) Ujk,
igk
where A, = —‘H683|@%u’v“).

Proof. Through the lemmas stated above, and with the calculation of the left side, we can conclude

~P() (V) = [Val? ™ (7 (30), 90— (0~ 24,80

+ | VP4 []Hess ul* + Ric(M)(Vu, Vu)

+ (0= 2)[ VP> g (uip — wgi)ujp-
i7j7k
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In the above computation, we note that, Ric(M)(Vu, Vu) =}, ; Rijusu;, |Hess ul?* = Zij(uij)Q, and

—Ap = DulP2|Vu*P — |Vu* P> upFy, = [Vul> P (V (Apu) , Vu) .
k

Now in this identity, since Ric(M) > 0, |Hess u|2 > A%, and u is an eigenfunction of 1.1, we have
1
L p(u) (Tul?) > [FulP2 (V (~MulP 20— Fw)) , V) + (p — 2)|VulP 2, x
p

(MuP~?u+F) + (p = 1|V A7 + (p = 2)|Vul* 0 Y wgu; (wi — upi)ugn
ijk
= Ap = 2)|VulP2ulP"2ud, + (p — 2)|VulP2A,F
— A|VulP~2 (V (|u|p_2u) ,Vu) — |Vu|P~2 (VF,Vu) + (p — 1)*|Vu[?P~142
+ (p — 2)|Vu|?~8 Z wiw (ugg, — ugi)ug > (p — 1)2|Vau[?P~A2
ij.k
+ Ap — 2)|VulP2|ulP2udy, + (p — 2)|VulP2A,F — X(p — 1)|VulP|u[P~2
— |VulP~2(VF,Vu) + (p — 2)|Vu|*~° Z ity (Uik — Uk ) Uk
ij.k
([l

Remark 2.7. In order to improve the accuracy of our estimation, we can utilize a more sophisticated
approach for calculating |Hess u|? in linear scenarios:

Au)? A 2
‘Hessu|z><u>+n<U_Au> ,
n n—1 n

and get a better estimate.

3. PROOF OF MAIN RESULTS

Our focus now shifts to establishing a gradient estimate for eigenfunctions. To begin, we will consider a
weak solution u that belongs to the class WP(M) and fulfills equation 1.1. As stated u € Cb®, for some
0<a<l.

The identity [,, ulu[P~2dv = 0, implies that u changes sign. Set 8 = p(sup,; u)?, where p > 1.

Proof of 1.2: We consider a continuous function G' = B‘Yﬁlrp, A=p—|ul.
This function achieves it’s maximum at a point g € M. We also assume that Vu # 0. From regularity of
elliptic equations, G is smooth function around zg.
The maximum principle implies that
VG (1‘0) = 0,

(P(u)G) (x9) < 0.
To accurately represent the solution u, we take a local orthonormal frame field {ej,- - ,e,} centered around
xg, so we have u; = |Vul, and u; = 0, for i > 2. At ¢ , from VG = 0 we have

w
Z |VulP~2uju; + \Vu|p\u|p_2uzz =0, for i=1,--- n.
J

With above assumption on local orthonormal frame, we have

uy =0 (for j=>2), wPuyy = —ulu/7?G.
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Employing lemmas in the previous section, we have

P(u) ([uP) = p(p — 1)?ulP~2|Vul? — Aplu|*~2 — pF(z, u, Vu)|ulP>u
= p(p — 1)*[ulP*ul — Ap|u|* ™2 — pFluP*u

and

P(u) (|Vul?) = p|Val~* Y " uf; +p(p — 2)| Va0 Y winjupgug

i7k i7j7k
+p| V[P~ Z ug(Au) + p(p — 2)[Vu|*P~° Z UR Ui Uj Uik
k 1.,k
+p[Vul® Y " Rijuiug + p(p — 2)[ V>0 " wugugiug
ij ikl

+p(p—2)°[Vul* > wwgwugugug = pu Y ud + (0 —2) Y uiy
i,4,k,l ‘ k

+pui? " (Aw)y + p(p — 2)u?Puan + pui” ?Ru + plp — 2)ui i,
2p—4 2p—4
+p(p — 2)%u" ufy = pui®” Z uj; + (p — 2) Z upy
k
+pui? ™ (Aw)y + (p = 2)uan) + pu? *Rix + p(p — 2)(p — Dui? ™ "ud,
that is Ric(M) >0, and >, ug, > S pur, > uiy,

P(u) (IVul?) > plp — 1)%u?"udy + pui”> (Au)y + (p — 2)uan) .
From lemma 2.5,
uF (A1 + (p — 2)ul  urnn = —Ap — DudlulP~2 — 2(p — 2)ufud, + (p — 2)Fuiun
+2(p— 2)u]1’u%1 — u€71F1 + Ap — 2)u|ulP~ 2u%u11,

or

W (Aw)1 + (p = 2)uin) = (p — 2)Fuiyun — of T Fy = Mp — Dutfuf?~
+ AMp — 2)uuduy [ulP 2.
Recall the identity |Vu|P = AG. Applying P(u) to both sides VG(z¢) = 0 and P(u)G(zy) <0,
P(u) (IVul?) = P(u)(AG) = Y pij (A5G + AiGj + A;Gi + AGY))

1,3

+(p—2)[VulP ™ (Ai;G + AiGj + A;Gi + AGy;) .

i?j
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Then at xg,

P(u) (|Vul?) (zo) = |VulP 2 Z (AiiG + AGy) + (p — 2)|VulP~"u? (AnG + AG1)

(]

= “]f_Q Z (AiiG+ AGy) + (p —2)AnG + (p— 2)AG1;

)

But in g, P(u)G <0 so Z” pijGij < 0 and then

(p — 2)G11 + Z Giu <0.

Hence
P(u) (|Vul?) (z0) < uf ™ [(p ~2)An + ) Aii| G
i
Also A = 3 — |u|P implies that
Ay = —p [(p — 2)ulP~*u?u? + [uP~2u? + [uP2uuy] -
For this point xg,
if 1=1, A = —p(p — D|ulP~2u? — plu|P~2uu;
and for i > 1, Ay = —plulP"2uug;.
Therefore,

P(u) (|Vul) (z0) < =pGlulPuf 2 [(p — V)ui + [ufPuun + Y uuii + (p — 2)uun

+(p = D(p = 2)ui] = =G [p(p = 1*[ulP">ul — Aplu~? — pFululP~?]
and then
P(u) ([Vul?) (z0) < =G P(u) (Jul’) (xo).
Combining the above inequalities, at g,

=GP ([uf’) = P(|Vul?),

SO

— G (p(p — 1)2[uP~2uf) — Aplu|% — pFlulP~2u) > p(p — 1)*ui?ud

+puP 7 (Au)y + (p — 2)uinn) = p(p — 1)2uP M,

+ pu]f_4 ((p — 2)Fu%u11 — u’f_lFl —Ap— l)uﬂu\p_Q + Ap— 2)uu%u11]u\p_2) .
Finally

uP P+ AB(p — 1)GlulP~? + (p — DululP72FG > BG2(p — 1)*ulP 2,
or
u2p75 U
1
Filloo + A+ =F > G(p—1).
(- DGFup2 Tl A+ = Gy

Now as for boundedness of || F1]|co, || F||co, s well as u1, |u| at the point xg, while p is sufficiently near to 1,
we are able to pass from the first term and coefficient of F' and get A+ F > G(p — 1). O
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Proof of 1.3. First, recall a well-known inequality in which for any n > 1:
ja+ 6" < 2" (fa]" + [o]").

Let x1,29 € M, such that 0 < u(x1) = supu, u(xz) = 0, and consider a minimal normal geodesic 7, whit

7(0) = z2 to y(1) = ;.
Due to the fact that dist(ze,z1) < d, and with the considering circumstance 1.3 on F'; we have

A+ C 1+ |Vu]) > (p-1G
C

A |Vul
(/(p —n it i/(p —pp VD=

Integrating along v from z2 to z; and then changing the variable, we obtain that

1 1 1
Av +C¥ C» “ f’fl
d P+ . + - / |VU| 2/ Nifu"l
(=12 ((p—1)22 1) o v (5= [ulr)r

or after simplification

1 1 1

= = = sup u sup u
d Ar +Cr . Cr 1/ duz/ du :
(p— D217 ((p— D215 Jo 0o (B lup)?

_/1 du o
0 (1—|up)r Psin(g)

Therefore,
1 p
_ p—1)p
A> é 7 ((p—1)2r )7 T
psm (5)
O
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