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Abstract.

..

In this paper, we obtain new non-reducible exact solutions of generalized Zakharov-Kuznetsov equation
by method of partially invariant solutions (PISs). PISs method is the generalization of the similarity
reduction method. We focus on the case of PISs that have defect structure 1 and they obtained from
three-dimensional subalgebras. For this purpose, we calculate the optimal system of 1, 2 and 3 dimen-
sional subalgebras of the symmetry algebra for the equation. Also, it will be shown that these solutions
are different from the group invariant solutions computed by the method of Lie symmetry and their
non-reducibility is proven.

1. Introduction

Nonlinear evolution equations represent a powerful mathematical framework for modeling dynamic pro-
cesses that deviate significantly from linear behavior. These equations have remarkable applications in fields
as diverse as fluid dynamics, quantum mechanics, pattern formation, and information theory. It is interest-
ing to note that solving equations can be quite daunting at times. Sophus Lie introduced the classical Lie
method or the Lie symmetry method in the 19th century [1]. This powerful method can reduce the order of
ordinary differential equations [2, 3] and convert PDEs to ODEs in certain cases [4–6]. Furthermore, finding
symmetry and a specific solution can lead to a wide range of solutions. The Lie symmetry group theory
has been extensively used to analyze and solve PDE systems [7–9]. However, the Lie classical symmetry
method has its limitations and cannot find all similarity reductions for PDE equations. Therefore, the de-
velopment of new generalizations of this method has been motivated [10, 11]. With the new generalizations,
the Lie symmetry method can be even more effective in solving complex problems. The method of partial
invariant solutions (PISs) is applied to reduce PDEs. Like the similarity reduction method, this method is
algorithmic and based on classification of subgroups of symmetry group. PISs, introduced by Ovsiannikov
in 1992 [12], represent an extension of invariant solutions. The construction algorithm for PISs is identical
to that of invariant solutions. By leveraging PISs, we can unlock a wide range of possibilities that were
not available before. When we work with low-dimensional groups, it is important to note that the process
of obtaining invariant solutions through the use of the partial invariant solutions method is generally more
facile compared to the Similarity Reduction (SR) method. The Lie symmetry method is also commonly
used to solve these equations, but it is often more challenging. Therefore, the PISs method presents an at-
tractive alternative for researchers seeking a more straightforward method of obtaining invariant solutions.
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Through the constructing PISs, one important concept appears which is defect structure, denoted by σ. It
is a quantity determined by dimension of orbits.

In this paper, we will use the PISs method to make new exact solutions of the generalized Zakharov-
Kuznetsov equation (gZK). The Zakharov-Kuznetsov (ZK) equation is given as follow,

ut + αuux + β(uxx + uyy)x = 0. (1.1)

This equation is a well-known 2-dimensional generalization of the KdV equation that describes the behavior
of weakly nonlinear ion-acoustic waves in plasma consisting of cold ions and hot isothermal electrons in
the presence of a uniform magnetic field [13]. The equation is called the generalized Zakharov-Kuznetsov
equation and is given by

ut + αunux + β(uxx + uyy)x = 0, (1.2)

where u is a smooth function with respect to (t, x, y) and α, β and n are arbitrary constants [14]. The initial
term in the equation represents the evolution term, while the second term denotes the nonlinear term. The
third and fourth terms, when taken together in parentheses, represent the dispersion terms. Solitons are the
outcome of a subtle balance between dispersion and nonlinearity. The exponent n, which constitutes the
power law nonlinearity parameter, is a positive real number. It seems that the extended tanh method was
utilized in [15] to derive periodic solutions and solitons for (1.2), which may prove useful in describing wave
characteristics in the field of plasma physics. On the other hand, complex solutions for (1.2) were obtained
using the Cole-Hopf transformation and the first integral technique in [16]. We can change the variables
and rewrite the gZK equation as a system of PDEs that follows:

v − uxx − uyy = 0,
ut + αunux + βvx = 0.

(1.3)

This system has a 4-dimensional Lie symmetry algebra g generated by following infinitesimal generators
[17].

X1 = ∂t, X2 = ∂x, X3 = ∂y, X4 = n(3t∂t + x∂x + y∂y)− 2u∂u. (1.4)

Partial invariant non-reducible solutions for system 1.3 are not invariant to lower-dimension subalgebras.
Finding these PISs can help obtain new solutions for the generalized Zakharov-Kuznetsov equation. This
paper is organized as follows. In section 2, the algorithm of finding PIS is presented. In section 3, we classify
the three-dimensional Lie symmetry subalgebra of g. In section 4, we calculate some of non-reducible PISs
for system 1.3.

2. Computing the PISs for a PDEs system

In this section, after stating the basics and important definitions, we will discuss the method of finding
the partial invariant solutions for a system of partial differential equations [12, 18]. Consider a system of
partial differential equations (PDEs) denoted by ∆, where the system is of nth order and has p independent
variables (x = (xi) ∈ X, i = 1, ..., p) and q dependent variables (u(uj) ∈ U, j = 1, ..., q)

∆ = ∆µ(x, u
(n)) = 0, µ = 1, ..., r. (2.1)

Assume that G serves as a local symmetry group for the aforementioned system. A local symmetry group
is a set of transformations that preserve certain system properties locally, i.e., within a small neighborhood
around each point. The orbit space of Γh can be defined as the set of r-dimensional orbits of G on X × U
which intersect the graph Γh. This orbit space provides a natural parametrization of the solutions of the
system (2.1) with graph Γh as

GΓh = {g.(x, u) | (x, u) ∈ Γh, g ∈ G},
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The solution’s defect structure for group G is the union of the orbits of its Γh-elements, where u = h(x). So
we have

σ = dim(GΓh)− dim(Γh) = dim(GΓh)− p,

and calculated by the matrix of generators characteristics. Also we have

min{r, q} ≥ σ ≥ 0.

If σ = 0, then u = h(x) is an invariant solution. If min{r, q} > σ > 0, then u = h(x) is definitely a partially
invariant solution. To calculate the PISs, it is imperative that we first categorize the symmetry group into
conjugacy classes. To obtain PISs with a defect structure σ, we must select subgroups H that have the
following effect: If the dimension of the H orbits on the space X × U is r, then the dimension of the orbits
is r − σ on the space X. This concept was originally mentioned in [19, 20], and it is essential to select H
as a subgroup with this effect, and h as its Lie algebra with infinitesimal generators {v1, ..., vs}. A complete
set of functionally independent invariants can be obtained in the form of:

{Ij(x, u), ξi(x)}, (2.2)

where j = 1, ..., q − σ and i = 1, ..., p+ σ − s. If u = h(x) is a function, then we can express the space HΓh

according to the invariant (2.2). Thus

hj(ξi(x)) = Ij(x, u), (2.3)

where hj are optional functions. Now by utilizing the implicit function theorem, we can express

uiα = U iα(x, ujβ , hj(ξi(x))), (2.4)

where β = 1, ..., σ and α = 1, ..., q − σ. It is noteworthy that the residuary dependent variables are solely
dependent on the initial independent variables

ujβ = U jβ (x1, ..., xp), β = 1, ..., σ. (2.5)

We need to find the derivatives of the functions u1, ..., uq concerning recent variables that are received from
equations (2.4) and (2.5). Once we substitute these amounts into the initial system, we get a revived system
comprising the q − σ functions hj and invariants ξi. In general, the obtained equations are inconsistent,
so we need to calculate the compatibility conditions. These constraints provide us with a system of PDEs,
represented by ∆/H. Additionally, a PDEs system is obtained from (2.5), indicated by ∆′. Now, first, we
should solve the system ∆/H, and for the individual solution of this system, solve the system ∆′. Then
replace the solutions into equations (2.4) and (2.5) to receive the partially invariant solutions.

3. Classifying of symmetry algebras for (1.3)

We obtain the optimal system for symmetry subalgebras of equations that appear in (1.3) in this section.
For this purpose, we categorize into conjugacy classes the subgroups of the symmetry group of (1.3), that is
equivalent to classify the subalgebras of 1.3. In this paper, the classification of three-dimensional subalgebras
is necessary to estimate the PISs with defect σ = 1, and where the decreased system ∆/H is a system of
ODE. Given that p = 3, σ = 1, and p + σ − s = 1, we can conclude that s = 3, thus leading to the
consideration of three-dimensional subgroups. Infinitesimal symmetries can be combined linearly to create
an unlimited number of one-dimensional subalgebras for a given system. To determine which subgroups
give different types of solutions, it’s essential to find invariant solutions that aren’t linked by transformation
in the total group of symmetry. This approach directed to the idea of a subalgebras optimal system. For
subalgebras in dimensional one, the classification issue is equivalent to classifying the orbits of the adjoint
representation [21]. A solution to this problem is to take a general element in the Lie algebra and simplify it
by imposing various adjoint transformations on it. Optimal sets of subalgebras can be obtained by selecting
only one representative from each class of equivalent subalgebras [12].

The optimal system of (1.3) was calculated in [22] as follows:
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1) One-dimensional optimal system:

X1 + εX2 + εX3, X2, X3 + aX2, X4, X1, (3.1)

where a is constant and ε = 0,±1.
2)To classify subalgebras in dimension two, we should choose two generators. One generator is chosen from

the inventory of optimal systems in dimension one , while the other generator is optional. Let h = span{X,Y }
be a subalgebra of g in dimension two, where X is a subalgebra in dimension one chosen from (3.1), and Y is
an optional vector Y = b1X1+· · ·+b4X4. We need to facilitate h by applying various adjoint transformations.
By this method, two-dimensional optimal system is obtained as follows:

⟨X1, X2⟩, ⟨X1, X3 + aX2⟩, ⟨X2, X3⟩, ⟨X3, X1 + εX2⟩,
⟨X1, X4⟩, ⟨X4, X3 + aX2⟩, ⟨X4, X2⟩, ⟨X1 + εX3, X2 + aX3⟩.

(3.2)

3) By the same method, three-dimensional optimal system is:

⟨X2, X3, X4⟩, ⟨X1, X2, X3⟩, ⟨X1, X4, X3 + aX2⟩, ⟨X1, X2, X4⟩. (3.3)

4. Non-reducible PISs for system 1.3

In this section we will perform the non-reducible partial invariant solutions. For a partial invariant
solution u = h(x) that is reducible, there exist subgroups of G that are not invariant with respect to u.
However, we can discover a subgroup H ′, where is a subset of H, such that u is an H ′-invariant solution
and

s− σ = dim(H)− σ 6 dim(H ′Γh).

By utilizing the method of similarity reduction, one can easily obtain reducible PISs from a reduced system
that involves independent variables. This approach is not only efficient but also proves to be an effective
way of obtaining desired outcomes from decreased system concerning

p+ σ − s > p− dim(H ′Γh),

independent variables. Obtaining them through this method is easier than using the PISs method [12].
Assume the Lie subalgebra ⟨X2, X3, X4⟩. The collection of functionally independent invariants for this
subalgebra is a collection of functions I with the effect that X2(I) = X3(I) = X4(I) = 0. To obtain this
set of functions, we can calculate them by solving for I using the above property. Once we have this set of
functions, we will have the set of functionally independent invariants for this Lie subalgebra:

{t, ut
2
3n , v}. (4.1)

The corresponding equation to relations (2.3) is

ut
2
3n = h(v), (4.2)

and we have the following expression for the solutions corresponding to equations (2.4) and (2.5)

u = t−
2
3nh(v), v = u−1g(t). (4.3)

We can now calculate the derivatives of functions u and v using the equations stated in (4.3). Substituting
into the system (1.3) we obtain

3n(−v +D(h(v))vtt
−2
3n )− 2h(v)t

−2−3n
3n = 0,

3nt−
2
3n (D(h(v))vy + βD(3)(h(v))vtv

2
x + 2βD(2)(h(v))vxvtx+

βD(2)(h(v))vtvxx + βD(h(v))vtxx) + 3n(vαhn(v)t
−2
3 + βvtt)−

2βt
−2−3n

3n (D(h(v))vxx +D(2)(h(v))v2x) = 0.

(4.4)
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By using the chain rule the consistency conditions obtained from system (4.4)

−v22h+ g2 + 2vgg′ = 0,

2vgg′ + vh′ − v2g′2 − v2g2 = 0,

v2hg′′ − vg′g + v2gg′2 − v2hg = 0.
(4.5)

Solving this system of ODEs and by the use of the relations (4.3) we obtain these solutions:

u(t, x, y) =
n

√
c1(n+ 1)(n+ 2)

2α
cosh−

2
n
(n√c1(c2 + x− c1t− (c3 − c1)y)

2
√
β(1 + (c3 − c1)2)

)
, (4.6)

where c1, c2, c3 are constants. This solution is not similar to the invariant solutions which obtained in [23]
by the Lie symmetry method. Also, these solutions are not equivalent to any of the previous solutions.
So we deduce that PIS in (4.6) are new and non-reducible PISs. In (3.3), further subalgebras can be used
to calculate non-reducible PISs in a similar method. These non-reducible partial invariant solutions are
presented in Table I. It should be noted that c1, c2, c3, c4 in this table are arbitrary constants.

Table I
Subalgebras PISs

⟨X1, X2, X3⟩ u(t, x, y) =
√

−2c21α
2

αc21(βc1−c2)
csc

(
c4
√
2c21α

2 ± αy−βx
α+1

√
−2c21α

2

2(αβc33−αc2c21+β2c21−2βc2c1+c22)

)
⟨X1, X4, X3 + aX2⟩ u(t, x, y) =

√
−α

a(c1β−c2)
tanh

(
c1(

t−βy
β+naα+ 1)

√
n

2(c22+β2c21−2c2βc1+βαc31−c21c2α)

)
⟨X1, X2, X4⟩ u(t, x, y) =

√
2β
n sec

(√
2αβ

3
2

(
± αβt−αx+y

αβ
√

2(βα2−1)
+ c1

))

Conclusion

In this paper, we have obtained new exact solutions of the generalized Zakharov-Kuznetsov equation
by using the partially invariant solutions method. Partial invariance is a concept that plays a crucial role
in many fields. While some partially invariant solutions behave consistently across all subalgebras, others
exhibit non-reducible characteristics. These non-reducible PISs are particularly fascinating, as they possess
unique properties and can offer valuable insights into complex problems. Non-reducible PISs are partially
invariant solutions that cannot be reduced to lower-dimensional subalgebras. These non-reducible PISs
provide new solutions for the system of partial differential equations. The solutions obtained through this
method cannot be constructed using the similarity solution method.
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